vignettes/111_polarised_nf/111_polarised_nf.Rmd
111_polarised_nf.Rmd
This example illustrates the calculation of orientation-averaged
local field intensities for separate circular polarisations, using the
keyword MapOaQuantity [p]
. The structure consists of a
tetramer of Au spheres. Because the structure is chiral, the local
fields depend on the handedness of the incident light, even after full
orientation averaging.
MapOaQuantity unpolarised
: returns orientation-averaged
near fields, also averaged over polarisationMapOaQuantity polarised
, with
Incidence 0 0 0 1
triggering both L and R
polarisationsMapOaQuantity polarised
, with
Incidence 0 0 0 2
triggering only R polarisationModeAndScheme 1 2
Wavelength 600
MultipoleCutoff 3
Medium 1.7689
OutputFormat HDF5 map_L
SpacePoints -40 100 100 -40 100 100 0 0 0 0 0 0
MapOaQuantity polarised
Incidence 0 0 0 -2 # L only
Scatterers 4
Au 0 65 0 30
Au 0 0 0 30
Au 65 0 0 30
Au 65 0 65 30
For a given (L) polarisation we obtain:
Rows: 10,201
Columns: 7
$ wavelength <dbl> 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600,…
$ x <dbl> -40, -40, -40, -40, -40, -40, -40, -40, -40, -40, -40, -40,…
$ y <dbl> -40.0, -38.6, -37.2, -35.8, -34.4, -33.0, -31.6, -30.2, -28…
$ z <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ `E^2` <dbl> 2.598977, 2.732408, 2.875605, 3.029059, 3.193237, 3.368563,…
$ `B^2` <dbl> 2.591401e-17, 2.617457e-17, 2.644542e-17, 2.672731e-17, 2.7…
$ `C^2` <dbl> 1.067857, 1.078401, 1.089044, 1.099723, 1.110363, 1.120874,…
For unpolarised incidence:
Rows: 10,201
Columns: 6
$ wavelength <dbl> 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600,…
$ x <dbl> -40, -40, -40, -40, -40, -40, -40, -40, -40, -40, -40, -40,…
$ y <dbl> -40.0, -38.6, -37.2, -35.8, -34.4, -33.0, -31.6, -30.2, -28…
$ z <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ `E^2` <dbl> 2.659462, 2.795008, 2.940230, 3.095586, 3.261501, 3.438356,…
$ `B^2` <dbl> 2.481858e-17, 2.505532e-17, 2.530400e-17, 2.556574e-17, 2.5…
For both polarisations:
Rows: 10,201
Columns: 10
$ wavelength <dbl> 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600,…
$ x <dbl> -40, -40, -40, -40, -40, -40, -40, -40, -40, -40, -40, -40,…
$ y <dbl> -40.0, -38.6, -37.2, -35.8, -34.4, -33.0, -31.6, -30.2, -28…
$ z <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ `E^2[L]` <dbl> 2.719948, 2.857607, 3.004855, 3.162113, 3.329765, 3.508150,…
$ `E^2[R]` <dbl> 2.598977, 2.732408, 2.875605, 3.029059, 3.193237, 3.368563,…
$ `B^2[L]` <dbl> 2.372315e-17, 2.393606e-17, 2.416259e-17, 2.440417e-17, 2.4…
$ `B^2[R]` <dbl> 2.591401e-17, 2.617457e-17, 2.644542e-17, 2.672731e-17, 2.7…
$ `C[L]` <dbl> -1.0028411, -1.0100127, -1.0171346, -1.0241537, -1.0310116,…
$ `C[R]` <dbl> 1.067857, 1.078401, 1.089044, 1.099723, 1.110363, 1.120874,…
We now map the orientation-averaged local electric and magnetic field intensity and local degree of optical chirality (LDOC) in the z=0 plane, for unpolarised excitation, and the difference between L and R polarisations. Note that only the unpolarised electric field intensity is displayed in log scale. The calculations inside the spheres are not reliable and therefore not displayed.
For unpolarised LDOC, we simply average the two polarisations, as no formula is readily available.
Last run: 05 December, 2023