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Abstract

Conventional UV/Visible spectroscopy instruments measure the extinction spec-

trum of solutions in a transmission con�guration. Because of the �nite (non-zero)

acceptance angle in detection, errors due to forward scattering and multiple scattering

can be introduced when measuring scattering samples. We here experimentally quantify

these errors using polystyrene spheres of di�erent sizes for two representative analyti-

cal/research UV/Visible instruments, one based on a single beam diode-array and the

other on a double beam scanning con�guration. The measured spectra for particles

larger than 1µm are shown to be di�erent between the two instruments, even at low

concentration, and also vary with concentration (in contradiction with Beer-Lambert

law). We show that systematic errors in the range 10− 40% are common in such mea-

surements. We propose a model accounting for both forward and multiple-scattering

errors and demonstrate its agreement with our experimental results. This model could

reduce systematic errors in measurements of scattering samples by up to 40%.
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Introduction

UV-Visible spectroscopy is commonly used for the routine characterization of nano- and

micro-particles, for example to measure the plasmon resonances of metallic nanoparticles,1�3

to determine the size and concentration of gold and silver nanospheres,4�7 or to study dielec-

tric nano- and microspheres.8,9 Dielectric microspheres are important in many applications,

including in biology for drug release,10 as �uorescent tags11 or as phantoms to mimic the op-

tical properties of tissues,12 in climate-related aerosol research as a model aerosol to calibrate

instruments,13 or in microcavity research as whispering gallery mode resonators.14

The UV/Visible spectrum is typically measured in a transmission geometry where both

optical absorption and scattering can a�ect the transmission. The resulting spectrum is

therefore the extinction spectrum (sum of absorption and scattering), although it is often

loosely referred to as absorption or absorbance spectrum. For many dielectric particles, this

spectrum should also correspond to the scattering spectrum in the visible region as there

is typically no absorption above 300 nm. In an ideal transmission instrument, no scattering

should be detected and the true extinction would be measured. In practice however, light

that is scattered at an angle very close to the forward direction may be within the �eld

of view of the detector, which can introduce an error compared to the ideal extinction (or

scattering) spectrum. This problem is particularly important for large particles (typically

larger than 3 to 5µm), as the scattering pro�le dramatically concentrates forward as size

increases. This issue has been highlighted and studied early on15�19 and more recently,20

including in speci�c contexts such as ocean21,22 or blood23 measurements. Ref.24 developed

a more advanced optical transmission set-up to overcome the problem and recover the true

extinction spectrum. This approach is however much less practical than standard UV/Vis

for routine characterization, so analytical correction based on theoretical calculations are

desirable. These require to compute the radiation pro�le of the scatterers and are there-

fore particularly suited to spherical scatterers, where Mie theory can be used. A simple

model for these forward-scattering errors was provided in the early studies15,16 and more
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recently re�ned.25 In both cases, the multiple-scattering e�ects are neglected, so the models

are only valid in the limit of dilute scatterers but their range of applicability has not been

clearly stated. The e�ect of multiple-scattering was investigated both theoretically and ex-

perimentally,17�19 for example in the context of long-pathlength oceanic measurements21 but

have not been quanti�ed in conventional UV/Vis instruments used for research or analytical

chemistry applications.

In this work, we aim to quantify experimentally the importance of these errors for two

representative UV/Visible instruments, one single-beam (SB) array-based-detection, and

one double-beam (DB) photodiode-detection. We show that the problem is instrument-

dependent, and can indeed be non-negligible even for relatively small dielectric spheres (∼

1µm). It also results in strong deviations from Beer-Lambert law (BLL). The latter cannot

be explained by the original models15,16 as they follow BLL. The re�ned model of Ref.25 does

not follow BLL, but we here show that it does not agree either with experiments. To explain

this, we extend the forward-scattering error model to also include the e�ect of multiple-

scattering (MS) along the lines of the work in Ref.19 The proposed MS model results in

non-negligible changes even at relatively low concentrations. The new model explains all the

measurements simply using an instrument-speci�c detector acceptance angle. These �ndings

have implications for any UV/Visible measurements of particles of size above approx 1µm.

This work suggests that the measured spectra could be both instrument- and concentration-

dependent, resulting in potential errors in, for example, the derived concentration. The

model provides a relatively simple method to correct for these e�ects, if the particle size and

refractive index are known approximately.

Methods

UV/Visible spectroscopy. We use two representative UV/Vis spectrometers to illustrate

our �ndings. The �rst one is a Cary 8454 from Agilent, which is a single-beam (SB) instru-
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ment with a photodiode array detector. The second is a UV2600 from Shimadzu, which is a

double-beam wavelength-scanning instrument. All measurements are performed using 1cm

pathlength Quartz cuvettes from Starna, using ultrapure water as reference.

Polystyrene microspheres. Polystyrene microspheres of diameter from 0.75µm to 3µm

were purchased from Micromod (Germany), all with a stock concentration of 2.7%. We also

used 5µm PS microspheres from Duke Scienti�c (USA) with a stock concentration of 1%.

Solutions were diluted as needed in ultrapure water. For concentration-dependent measure-

ments, the highest concentration solution was �rst prepared from the stock, and the lower

concentrations were obtained by further dilution.

Mie theory. Mie theory26 was used to compute the optical properties (extinction, ab-

sorption, scattering, and radiation pro�les) of the PS spheres. We used the SPlaC package

(Matlab codes)3,27 with a very �ne discretization of 2881 angles to ensure convergence of

integrals relating to the radiation pro�le. Numerical integrals were performed using a simple

rectangular quadrature. The wavelength-dependent refractive index of water was taken from

Ref.,28 while that of PS is discussed further in the text.

Deviations from Beer-Lambert law and stray light

Fig. 1(a-b) shows the concentration dependence of the UV/Vis spectrum for a non-scattering

material, here the dye Eosin B, measured in the two UV/Vis instruments under study: a

single-beam (SB) diode-array Cary 8454 and a double-beam (DB) scanning photodiode-

dectector Shimadzu UV2600. As expected from standard UV/Vis theory, the measured ab-

sorbance Am(λ) at all wavelengths closely follows Beer-Lambert law (BLL), in other words,

it varies linearly with concentration. This is most evident when normalizing the spectra

with concentration c and path length L (L = 1 cm in all our experiments), the normalized

absorbance spectra Ām(λ) = Am(λ)/(cL) shown in Fig. 1(c-d) are identical at low con-
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Figure 1: (a-d) UV/Vis spectra of Eosin B dye at di�erent concentrations in two di�erent
spectrometers: a DB Shimadzu UV2600 (left) and a SB CCD-array Cary 8454 (right). The
spectra are shown as is in the top panels (a-b) and normalized to concentration in the
middle (c-d). (e-f) Concentration dependence at selected wavelength: 518, 400, and 250 nm
(symbols) showing the deviation from Beer-Lambert law (dotted line, linear). The stray light
model for the SB (pS = 1.5× 10−3, solid line) and DB (pS = 1.5× 10−5, dashed line) show
a good agreement with experiments. The measured OD, Am is plotted against the ideal OD
from Beer-Lambert law A0 = Ā0cL in (e) while the error (A0 − Am) is plotted in (f). The
deviations from BLL are mostly apparent at 518 nm (peak of absorption) where the OD is
largest.
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centrations and only start deviating at high concentrations. For these low concentrations,

Ām(λ) = Am(λ)/(cL) = Ā0(λ) corresponds to the decadic molar absorption coe�cient (in

cm−1M−1). Deviations from the Beer-Lambert law can be quanti�ed at a given wavelength

λ0 by considering the error in Am(λ0), namely Am(λ0) − A0(λ0), where A0(λ0) is the ideal

absorption given by A0(λ0) = Ā0(λ0)cL. As illustrated in Fig. 1(e-f), deviations are observed

at the highest ODs for both instruments, but are clearly more pronounced in the SB.

These errors are well understood in terms of stray light. If we denote the stray light

probability pS (de�ned as a proportion of the incident light intensity), then the predicted

OD taking account stray light is (see App. A):

Am = A0L− log10
[
1 + pS

(
10A0 − 1

)]
(1)

This stray light model is plotted alongside the experimentally-derived errors in Fig. 1(e-f),

from which stray light probabilities of the order of 1.5× 10−3 (SB) and 1.5× 10−5 (DB) are

derived for these two instruments around 520 nm. Such a di�erence in stray light is expected

between a SB diode-array and a scanning DB spectrometer. The important point in our

context is that the stray light errors are negligible up to OD of ∼ 2 (SB) or ∼ 4 (DB) so we

will be able to ignore them in the following.

If we now perform the same experiment on a scattering sample, see Fig. 2 for an example

with 3µm polystyrene (PS) microspheres, the results are quite di�erent. Firstly, the non-

linear dependence occurs at a much lower OD and cannot therefore be attributed to stray

light. Secondly, even in the linear regime (low concentration), the two instruments give

noticeably di�erent spectra. The latter can be explained by the fact that some of the

forward-scattered light may reach the detector and decrease the apparent extinction, an

e�ect that has been well documented in the past15,16,22,23,25 and which we revisit in this

work.
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Figure 2: UV/Vis spectra of 3µm-diameter PS spheres at di�erent concentrations in the
two di�erent spectrometers: DB (left) and SB (right). The spectra are shown as is in the
top panels (a-b) and normalized to concentration in (c-d). Concentrations are indicated
as a dilution factor (50× to 1000×) from a stock solution of 2.7% (by mass) polystyrene
corresponding to c ≈ 3.4× 10−12M.

Forward-scattering errors

As illustrated in Fig. 3, particles larger than the wavelength scatter light predominantly

forward, and the larger the particle, the more narrow the radiation pro�le in the forward

direction. In a typical UV/Vis instrument, the extinction is measured in transmission mode.

An ideal instrument use a perfectly collimated beam and would only measure the transmis-

sion of the incident beam, but in practice, light scattered within an acceptance angle ∆ of the

forward direction will also be detected (Fig. 3(c)). This results in an apparent larger trans-

mission and therefore reduced extinction OD. This e�ect should be instrument-dependent

(through the value of ∆), and particle-size-dependent like the radiation pro�le. As discussed

in previous studies,15,16,25 forward scattering errors can be quanti�ed for spheres using Mie

theory calculations as follows. We �rst de�ne and calculate the proportion of scattered light

that is captured in the detector:

pdet(∆) =
1

σsca

∫ θdet

0

πF (θ) sin θdθ, (2)
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Figure 3: Illustration of forward-scattering errors. The radiation pro�le, F (θ) (normalized to
1), computed from Mie theory at λ = 500nm , is plotted in (a-b) for PS spheres of increasing
diameter d immersed in water. The pro�le becomes increasingly dominated by near-forward
scattering. If the detector captures rays scattered within a small acceptance angle ∆ (c),
then a fraction p(∆) of the scattered light will be detected. p(∆) can be computed from
F (θ), it increases with ∆ and with particle size (d).
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where

σsca =

∫ π

0

πF (θ) sin θdθ,

is the scattering cross-section and

F (θ) =
π

k2

[
S1(θ)

2 + S2(θ)
2
]

(3)

is the scattering radiation pro�le for unpolarized light (k = 2π/λ, S1 and S2 are the standard

scattering amplitudes from Mie theory26). Note that in Eq. 2, a circular acceptance area

for the detector is assumed to simplify the calculation. This will be appropriate in many

cases where a circular lens (or mirror) is used to focus the collimated beam on the detector

slits. However, there may be situations where a rectangular mirror or the rectangular slits

of the detector determine the acceptance area. In such cases, Eq. 2 should be adapted to

the speci�c geometry, but we expect the additional correction to be small compared to the

overall forward-scattering error. Note also that given the rotational symmetry of the problem

around the optical axis, the polarization of the incident beam does not a�ect the �nal result

for pdet. Although the expressions above are given for unpolarized illumination for simplicity,

the same result would be obtained for polarized light.

In most cases, the measured scatterers are in a solvent (typically water) but the detector

is in air, so to account for refraction at the cuvette interfaces, the integral is taken up to

angle16,25

θdet = asin

(
1

nw(λ)
sin(∆)

)
(4)

rather than ∆. nw is the refractive index of the solvent, typically water, which may be

wavelength-dependent. We also note that when computing numerically the integral in Eq. 2,

a �ne quadrature is necessary to properly capture the narrow pro�le, especially for larger
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particles. Some representative results of this approach are shown in Fig. 3(d). Even at

relatively small ∆, for example ∆ = 0.04 rad≈ 2.3 ◦, pdet can reach 10% for particles of 3µm

diameter or more, which would result in large errors in the measured extinction. It should

be noted that this approach applies for a large number of scatterers as in typical UV/Vis

spectroscopy. For more advanced experiments with single or a small number of particles,

more subtle interference e�ects between forward scattering and incident beam must be taken

into account.29�31

Following the model of Ref.,25 if we denote by I0 the incident light, the transmitted light

in an ideal case should then be It = I0 × 10−E where E = A+ S is the extinction OD (sum

of absorption and scattering contributions). The intensity of the scattered light takes the

form:

IS = I0
S

E

(
1− 10−E

)
. (5)

Assuming a proportion pdet(∆) of this scattered light is detected, the apparent transmitted

light is now instead Īt = It+pdet(∆)IS and the apparent extinction is (here adding the stray

light probability pS to the model):

Em = − log10
Īt
I0

= E − log10

[
1 +

(
10E − 1

)(
pS +

S

E
pdet(∆)

)]
. (6)

From this, we clearly see that this e�ect could be much more important than stray light if

∆ is not zero, even for small particle size. This model also has a non-trivial concentration

dependence deviating from BLL. In the dilute limit, E ≪ 1 and 10E ≈ 1 + E ln 10, so

neglecting stray light, we have:

Em ≈ E − log10 [1 + S(ln 10)pdet(∆)] ≈ E − Spdet (7)
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Figure 4: Multiple scattering e�ects for a 3µm PS sphere at 500 nm. (a) Angular distribution
after n scattering events, Fn(θ). F1(θ) is computed from Mie theory and used to iteratively
compute Fn(θ) using Monte-Carlo simulations (see App. B). (b) Probability of forward scat-
tering detection within the acceptance angle ∆ (computed from Eq. 2 with the corresponding
Fn(θ)). (c) Resulting OD correction, (Em − E)/E computed from Eq. 10, compared to the
original forward-scattering model, Eq. 6. The correct result (Em = E) corresponds to a zero
OD correction. The non-zero error at low scattering is due to forward-scattering errors. As
in (b), blue corresponds to ∆ = 0.068 and red to ∆ = 0.034. Note that the particles are
non-absorbing here, so E = S.

The latter expression corresponds to the original model15,16 and is linear with concentration

as BLL, but note that it is not identical to BLL (Em = E) and exhibit a smaller slope. In

this case, for non-absorbing scatterers (S = E), the relative error due to forward-scattering

is then simply pdet(∆) (note that this is a wavelength-dependent function).

Multiple-scattering errors

One major problem with these models is that they ignore the possibility of multiple scattering

events, which change the probability distribution of scattered angles.21 The impact of multi-

ple scattering on transmission measurements in has been well recognized.32 It can be studied

within radiative transfer theory in the small angle approximation, which is valid for particles

much larger than the wavelength.17,18,33 However, for intermediate sizes as considered here, a

full calculation based on Monte Carlo ray tracing experiments may be necessary.19 We note

that coherent e�ects due to particle-particle interaction may also occur at high concentra-
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tion,34�38 but these are ignored here given the relatively low scattering range measurable in

conventional UV/Vis systems (with ODs up to 3-4 over a 1 cm pathlength).

To extend the FS model to account for multiple scattering, we here propose a model

inspired from a full Monte-Carlo ray tracing simulation of the system,19 but including a

number of simpli�cations. We �rst consider separately situations where exactly n scattering

events and no absorption occur, the probability of which is given by:

psca(n) =
(S ln 10)n

n!
10−E (8)

Note that
∑∞

n=1 psca(n) = 10−A − 10−E is the total probability of scattering only (no ab-

sorption), and pScat(n = 0) = 10−E corresponds to the normal transmission probability. The

probability of absorption (including after some scattering events) is 1−10−A and those three

terms add up to 1, as it should. In an ideal measurement with ∆ = 0, scattering events

(whether single or multiple) are not detected and only pScat(n = 0) matters. But when

∆ > 0, multiple scattering events change the probability distribution of scattered angles,

and pdet(∆, n) therefore now depends on n. The transmitted intensity can be expressed as

(we here neglect stray light e�ects):

Īt
I0

=
∑
n=0

psca(n)pdet(∆, n) (9)

where pdet(∆, n = 0)=1. If we separate the �rst term (n = 0), we can write the measured

OD as

Em = E − log10

[
1 +

∑
n=1

(S ln 10)n

n!
pdet(∆, n)

]
(10)

pdet(∆, n = 1) is the same as the one introduced in the previous forward-scattering error

model and can be computed from the scattering pro�le from Mie theory, F (θ), see Eq. 2. If

we set pdet(∆, n) = pdet(∆, n = 1), then the sum in the above expression is analytic and we
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recover the re�ned forward-scattering model expression (Eq. 6). This is in fact a pretty bad

assumption as illustrated in Fig. 4. After a known number of scattering events, n, we can

calculate the modi�ed radiation pro�le, Fn(θ), from F1(θ) = F (θ). For this, we used Monte

Carlo simulations as explained in App. B. Note that this treatment only considers angles,

not any ray/beam position shift, which could a�ect our ability to detect it in a real optical

system (this limitation also applied to the original model).
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Figure 5: Comparison of experiments and predictions for low concentration extinction spectra
of PS spheres in water measured on the single beam (SB, solid lines) and double beam (DB,
dashed lines) instruments. The nominal sphere diameters are (a) 0.75, (b) 1, (c) 3, and (d)
5µm. Mie calculations are carried out for a Gaussian distribution of sizes with mean d and
standard deviation σ, indicated in each plot as d ± σ/d. Also shown are the concentration
used in the Mie results, cMie and the nominal experimental one cExpt. The Mie predictions
are shown as is (∆ = 0) and accounting for forward-scattering errors using Eqn. 7 with
∆ = 0.034 (matching the SB data) or ∆ = 0.068 (matching DB).

The resulting probability distributions are shown in Fig. 4(a) in the case of 3µm PS

spheres at 500 nm. It is clear that the sharp forward nature of the probability distribution
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disappears very quickly as n increases, and even for n = 2 (note the log-scale in Fig. 4(a)).

This results in a sharp decrease of pdet(∆, n) with n, see Fig. 4(b). Including multiple-

scattering e�ects dramatically a�ects the predictions of the model as a function of scattering

(or equivalently concentration) as shown in Fig. 4(c). We also see from Fig. 4(c) that high-

order scattering must be included to obtain a convergent result in the sum in Eq. 10, for

example up to at least n = 8 for scattering ODs up to 2. Given the numerical complexity of

the full multiple-scattering model, it is desirable to �nd a suitable approximation, at least for

low concentrations/ODs. Figure 4(c) shows that the re�ned model,25 Eq. 6 (which assumes

pdet(∆, n) = pdet(∆, n = 1)), is a very bad approximation. It deviates substantially from the

multiple-scattering result, even at very low concentrations with ODs of the order of 0.1−0.2

only. Paradoxically, the original model, Eq. 7, based on pdet(∆, n ≥ 2) = 0 provides a better

approximation than the re�ned model. Note that it is also the small-OD limit for all models.

In practice, one can therefore use this low OD approximation when possible, typically up to

ODs of 0.2− 0.5 depending on the instrument and the required accuracy.

Comparison with experiments

We can now compare our experimental results to theoretical predictions using the models

developed in the previous section. We �rst start with low-concentration measurements where

the results are linear with concentration, typically for ODs smaller than ∼ 0.2− 0.3. As just

explained, the single-scattering model is incorrect even in this regime, but the low-scattering

approximation, Eq. 7, provides a reasonable approximation of the full multiple-scattering

model. We therefore use this approximation to compute predicted spectra from Mie theory

and compare them to experiments for PS spheres of mominal diameters 0.75, 1, 3, and 5µm,

see Fig. 5. In each case, we consider a Gaussian distribution of sizes and adjust the mean

diameter and standard deviation to match our observed spectra. The predicted spectra

are quite sensitive to the average size; less so to the standard deviation, but the latter
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does improve agreement (compared to a single size). The derived diameters and standard

deviations are consistent with the manufacturer speci�cations. For the Gaussian distribution,

the radiation pro�le is computed from Mie theory, from which pdet(∆) is computed from

Eq. 2 for all wavelengths. The acceptance angle of each instrument was adjusted to match

experiments resulting in ∆ = 0.034 rad ≈ 2◦ for the SB Cary and ∆ = 0.068 rad ≈ 4◦ for

the DB Shimadzu. This parameter should be the same for all measurements in a given

instrument. To match the Mie theory predictions to the measured OD, it is also necessary

to apply a scaling parameter related to particle concentration. In all cases, the derived

concentration is close to the manufacturer speci�cation, further strengthening the validity

of the results. These results are summarized in Fig. 5.

Table 1: Parameters for polystyrene refractive index from Zhang et al.39 and as derived from
this work. These two models only di�er materially for λ < 400nm.

- A B C D
Zhang et al. 1.56385 0.007855 0.000315 0
This work 1.56479 0.007357 0.0002454 1.842× 10−5

The agreement between predictions and experiments is overall very good, which is no-

table given the small number of parameters (e.g. a single ∆ per instrument for all particle

sizes). The substantial change in spectrum due to forward-scattering errors is explained

quantitatively by the model across di�erent instruments. Such a good agreement could not

be obtained with the existing single-scattering model from Ref.25 The measured OD can be

much smaller than the ideal OD (∆ = 0) for the larger particles. For 5µm particles, the

average error is about 16% for the SB instrument (∆ ≈ 2◦) and 35% for the DB (∆ ≈ 4◦).

These are much larger than one would typically accept in UV/Vis spectroscopy. Even for

the smaller 0.75µm particles, an error of 5% is obtained at the peak for the DB instrument.

The good agreement between theory and experiment moreover provides a tight constraint

on the wavelength-dependence of the refractive index. We initially used the polystyrene

refractive index as reported by Zhang et al.,,39 itself very similar to earlier measurements.40
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It can be analytically modeled as

n(λ) = A+
B

λ2
+

C

λ4
+

D

λ6
(11)

with A, B, C, D given in Tab. 1. Although good agreement was obtained above 400 nm,

there were distinct discrepancies below 400 nm across all sizes. These were corrected by

changing A, B, C, D as summarized in Tab. 1. These parameters were chosen to keep the

refractive index almost unchanged above 400 nm, but it is notably increased below 400 nm

to match experiments. We believe this new expression is closer to the actual refractive index

of our particles. This discrepancy is not surprising as Ref.39 only focused on the range above

400 nm. The remaining small discrepancies in Fig. 5, especially at the spectral boundaries

for larger spheres, may stem from the approximations we have made. The likely largest

remaining source of error is the assumption that the scattered light originates from a point

source inside the cuvette. Even if this is approximately justi�ed at low scattering, in the

multiple scattering regime, the extent of the illuminating beam could extend beyond its

original geometry.17 This secondary e�ect could be studied using radiative transfer theory17

or Monte-Carlo Ray tracing simulations,19 but this would increase a lot the complexity of

the model for a modest gain in accuracy. From the results of Fig. 5, we can estimate that

a correction based on the model we presented would reduce these errors to under 5% in the

majority of cases.

Finally, to verify our proposed multiple-scattering model, we can also consider the concen-

tration dependence, which as evidenced in Fig. 2 deviates strongly from Beer-Lambert law.

The situation is complicated here as the deviation from BLL originates from the forward-

scattering error, which is itself a�ected by multiple-scattering as seen in Fig. 4(c). This

results in a non-trivial wavelength dependence. For illustration, we here consider a sin-

gle wavelength, λ = 460nm, and focus on the relative error in OD, as compared to the

ideal OD A0 = Ā0cL, see Fig. 6. Even at low concentration, the error is non-zero and
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Figure 6: Experimental concentration dependence for 3µm PS spheres at 460 nm showing
the deviation from Beer-Lambert law for the SB (triangles) and DB (circles) instruments.
The measured OD, Em is plotted against the ideal OD E0 = Ē0cL in (a) while the relative
error (E0−Em)/E0 is plotted in (b). These are compared to di�erent theoretical models with
∆ = 0.034 (in red, for SB) or ∆ = 0.068 (in blue, for DB): original forward-scattering model
(Eq. 6, dotted lines), low-OD approximation (Eq. 7, dashed lines), and multiple-scattering
model (Eq. 10, solid lines). The latter is also shown with only three terms in the sum
calculated.

given by 1 − pdet(∆, n = 1) (and therefore particle- and instrument-dependent). The full

multiple-scattering model is shown to follow closely the experimentally observed concentra-

tion dependence. This is a strong vindication of the model, as no additional free parameters

are introduced (∆ was already set from the low-concentration results discussed earlier). In

contrast, the original forward-scattering model clearly di�ers from experiments, even at rel-

atively low concentration. The simple low-scattering approximation is arguably better, but

only valid for scattering below ∼ 0.3. Fig. 6(b) also shows that the sum in Eq. 10 can be

truncated at n = 3 for ODs up to ∼ 1, but should be evaluated up to relatively large n (we

used n = 20) to be accurate at the largest ODs.

Discussion and conclusion

These results provide quantitative examples of the potential errors in UV/Vis spectroscopy

of scattering samples in conventional instruments. For illustration, these are summarized in

Fig. 7, where the expected errors in measured extinction at 500 nm are shown as a function

of particle size. Even at low concentrations, these errors can be signi�cant, for example over

10% for 2µm particles in the DB instrument we tested. In this regime, the errors are forward-
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Figure 7: Expected extinction errors as a function of particle size for a purely scattering
sample of polystyrene spheres. We assume a �xed wavelength of 500 nm and consider the
low-scattering/low-concentration limit (dashed lines) or a sample with a scattering OD of
1 (solid lines). The multiple-scattering model with 20 scattering steps is used in the latter
case. We also considered two acceptance angles ∆ = 0.034 and ∆ = 0.068, corresponding to
the two instruments under study.

scattering errors due to the �nite acceptance angle of the instrument. Di�erent spectra are

therefore measured in di�erent instruments, as we clearly evidenced. At scattering ODs

above 0.3, multiple-scattering becomes important and must be accounted for using a more

elaborate model. All these errors are under 1% for particle size below 100 nm, but can reach

35% for particles 5µm and larger. Mie modeling for gold or silver particles (not shown)

suggest that the radiation pro�les are similar to those of dielectric particles, and similar

errors are therefore predicted. The conclusions should also hold at least semi-quantitatively

for non-spherical particles.

Given that these corrections are rarely accounted for, any technique/study relying on

UV/Vis spectroscopy to characterize particles larger than 1µm, for example to determine

concentration, likely su�ers from systematic errors in excess of 10%. The models presented

in this work could be used to correct these errors.
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Appendix

A. Simple stray light model

We consider the standard transmission experiment for a sample with extinction OD E at a

�xed wavelength. The incident intensity is I0. The transmitted intensity is then

Īt = I010
−E + Istray, (12)

where Istray represents the stray light at the �xed wavelength. If we de�ne pS = Istray/I0, we

then have

Īt = I010
−E

(
1 + pS10

E
)
, (13)

The stray light also a�ect the reference measurement (typically water), for which we have

Īreft = I0 (1 + pS) , (14)

The apparent (measured) extinction is then

Em = E − log10

(
1 + pS10

E

1 + pS

)
(15)

As pS is usually much smaller than one, this can be approximated as

Em = E − log10
[
1 + pS(10

E − 1)
]

(16)

Note that in this simple model, pS may in principle be wavelength-dependent.
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B. Computing angular distributions for multiple scattering

The radiation pro�le for single scattering can be computed with Mie theory as explained in

the main text. If we express it in terms of a probability distribution of the standard angles

of scattering, θ and ϕ, we have:

p1(θ) =
πF (θ) sin θ

σsca

[0 ≤ θ ≤ π] (17)

p1(ϕ) =
1

2π
[0 ≤ ϕ ≤ 2π] (18)

where the quantities have been de�ned earlier. Note that we are considering randomly

polarized excitation, which removes any ϕ-dependence. Assuming we know the probability

distribution of θ after exactly n scattering events, pn(θ), we can then calculate pn+1(θ) as

follows.

� Choose a random angle θ1 following the distribution pn(θ) and a random ϕ1. These

characterize the direction n1 of the photon before (n+1)th scattering in the lab frame.

� Choose a random angle θ′2 following the single-scattering distribution p1(θ) and a ran-

dom ϕ′
2. These characterize the direction n2 of the photon after scattering, in the

before-scattering photon frame (i.e. with respect to n1).

� Calculate the angle θ2 of n2 in the lab frame. One can show that this is given by:

cos θ2 = sin θ′2 cosϕ
′
2 sin θ1 + cos θ′2 cos θ1. (19)

� Repeat the previous steps for a large number of photons (5× 106 in our case).

� Create a histogram of derived θ2, which corresponds to the probability distribution

pn+1(θ).

pn(θ) can therefore be computed iteratively from p1(θ).

25



TOC Graphic

26


