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ABSTRACT
The optical properties of small spheroidal metallic nanoparticles can be simply studied within the quasistatic/electrostatic approximation, but
this is limited to particles much smaller than the wavelength. A number of approaches have been proposed to extend the range of validity
of this simple approximation to a range of sizes more relevant to applications in plasmonics, where resonances play a key role. The most
common approach, called the modified long-wavelength approximation, is based on physical considerations of the dynamic depolariza-
tion field inside the spheroid, but alternative empirical expressions have also been proposed, presenting better accuracy. Recently, an exact
Taylor expansion of the full electromagnetic solution has been derived [Majic et al., Phys. Rev. A 99, 013853 (2019)], which should arguably
provide the best approximation for a given order. We here compare the merits of these approximations to predict orientation-averaged
extinction/scattering/absorption spectra of metallic spheroidal nanoparticles. The Taylor expansion is shown to provide more accurate pre-
dictions over a wider range of parameters (aspect ratio and prolate/oblate shape). It also allows us to consider quadrupole and octupole
resonances. This simple approximation can therefore be used for small and intermediate-size nanoparticles in situations where computing
the full electromagnetic solution is not practical.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0085687

I. INTRODUCTION

The optical properties of sub-wavelength nanoparticles of
noble metals are an important subject of study due to their abil-
ity to sustain strong plasmonic resonances in the visible and near
infra-red regions. These localized plasmon resonances have found a
range of practical applications, including refractive index sensing,1
surface-enhanced Raman spectroscopy,2–4 molecule/plasmon cou-
pling studies,5–8 thermoplasmonics,9 and solar cell absorption
enhancement.10 General numerical approaches for calculating the
optical properties of metallic nanoparticles11 include the discrete
dipole approximation,12 the surface integral equation,13,14 the finite-
element method,15 or the T-matrix method.16,17 They are, however,
computer-intensive, time-consuming, and/or relatively complex to
implement. Mie theory18 provides a relatively simple and efficient
alternative but is only applicable to spherical nanoparticles. To
understand the effects of non-spherical particle shapes on their

optical properties, the spheroid geometry is a typical model system
for which simple results can still be derived. The electromagnetic
response of a small spheroidal particle can thus be derived within
the quasistatic/electrostatic approximation (ESA),2,18 where the inci-
dent electric field is considered homogeneous over the extent of the
particle (but still varies in time). The validity of this approximation
is, however, very limited, typically to sizes below ∼λ�60, where λ
is the excitation wavelength in the incident medium. Much work
has therefore been devoted to developing better approximations
that extend this range of validity to sizes relevant to experimental
work, typically between 20 and 100 nm.19–26 Such approximations
are typically expressed as a series expansion of the polarizability in
terms of its size parameter, the product of the particle’s size, and
wavenumber. Most approximations only consider the first three
terms of the dominant dipolar response.

While such a third order expansion with respect to parti-
cle size for small ellipsoidal particles was derived by Stevenson in
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1953,27 the results were too complex for most practical use. Instead,
physicists have since looked at alternative approaches to find vari-
ous corrections to the electrostatic polarizability. These derivations
rely either on physical assumptions, such as a uniform but phase-
varying internal field to derive a so-called dynamic correction to
the polarizability,19–21 or on empirical data22,25,28 from fully numer-
ical calculations. It should be noted that many of these efforts do
not apply to oblate spheroids and/or do not reduce to the cor-
rect expressions in the spherical limit. Despite their shortcomings,
these approximations are in great demand. For example, they have
been applied to spheroidal nano-shells,29 to study the resonance
conditions of localized surface plasmon resonances,25 to design
nano-particles to optimize optical absorption in spherical particles,30

to study infrared resonance damping in nanowires,31 or to predict
the resonances of nanorods32 and nanodisks.33 Recently, the exact
Taylor expansion of the rigorous solution for spheroids was derived
in the T-matrix framework, which provides a general description of
a scatterer’s multipolar response.24 This led to yet another expres-
sion for the dynamic correction to the quasistatic polarizability,
which should prove more accurate than other approximations of the
same order, as it is obtained via an exact Taylor expansion. Indeed,
these modified dipolar polarizabilities were recently used to calculate
the surface and orientation-averaged Raman enhancement factors
for spheroids, where the accuracy was greatly improved over the
electrostatic approximations,34 and have been extended to the spe-
cial case of absorbing media,35 where it was also shown to perform
much better than the modified long-wavelength approximation
(MLWA).

Here, we rigorously compare this new Taylor-based approx-
imation to popular alternative expressions by calculating the
orientation-averaged extinction/scattering/absorption spectra of
spheroidal nanoparticles and using the exact T-matrix results
as benchmark. We show that the new expressions provide the
best agreement over the widest range of geometrical and mate-
rial parameters. Our Taylor-based approximation also includes the
quadrupole and octupole interactions, which we show are necessary
for intermediate-sized particles. The Taylor approximation provides
simple formulas to study the plasmon resonances of such particles
and their dipolar/multipolar nature.

II. DIPOLAR APPROXIMATION
We consider a prolate or oblate spheroid with semi-axes c

along the rotation-symmetry axis z and a along x and y (half-width)
and with permittivity ε2 embedded in a homogeneous and non-
absorbing medium of permittivity ε1. All materials are assumed
isotropic and non-magnetic. We denote the relative permittivity
ε = ε2�ε1. For both prolate and oblate spheroids, we define the
eccentricity e =√c2 − a2�c, allowing e to be imaginary for oblate
spheroids (a > c). The spheroid is illuminated by a plane wave
with wavelength λ and the wavenumber in the incident medium
k1 = 2π

√
ε1�λ. The electromagnetic scattering problem consists in

solving for the internal and scattered electric field and deriv-
ing experimentally relevant quantities, such as absorption, scat-
tering, and extinction cross sections. This problem can be solved
semi-analytically using either vector spheroidal harmonics or the
T-matrix/Extended Boundary Condition Method (EBCM).16,36 The
latter is particularly suited to computing orientation-averaged cross

sections. Both techniques are substantially more complex than Mie
theory for spheres and suffer from possible numerical instabilities.37

They are therefore less suited to routine modeling, for example, in a
real-time experimental context, or to be included as building blocks
in more complex theoretical models. This is why many approxima-
tions have been proposed, in particular, for nanoparticles where the
size is smaller than or comparable to the wavelength.

For a spheroid, it is convenient to define the size parameter as
Xeq = k1req, where req = 3

√
a2c is the radius of a sphere of equivalent

volume. Note that the definition of the size parameter varies between
studies (with some, for example, using Xc = k1c or Xa = k1a). Our
definition of Xeq is chosen to capture the range of validity of small-X
approximations more generally. The simplest and most commonly
used small-X approximation is the Rayleigh–Gans or quasi-static
approximation, where the particle response is obtained by solving
an electrostatics problem where the incident field is constant (but
the dielectric function still depends on frequency). This approach
often focuses on the dipolar term, yielding a polarizability tensor
that describes the particle’s response to an incident field along any
incident direction, in the long-wavelength limit. It is convenient to
write the polarizability elements as2

α = 3ε1Vβ, (1)

where V is the particle volume (V = 4πa2c�3 here) and β is an adi-
mensional polarizability. For spheroids, the electrostatic solution
can be derived using spheroidal harmonics and yields the follow-
ing well-known formulas for the principal dipolar polarizabilities for
axial and transverse exciting fields:2,18

β0
w = ε − 1

3Lw(ε − 1) + 3
(2)

for w = x, y, z, where Lw are the dipole depolarization factors,

Lz = 1 − e2

e2 �atanh(e)
e

− 1�, (3)

Lx = Ly = 1 − Lz

2
. (4)

Note that most studies provide different expressions for prolate and
oblate spheroids, but all our expressions are valid for both prolate
and oblate spheroids, with the parameter e being purely imaginary
in the oblate case. These expressions describe very concisely the two
main dipolar plasmon resonances of metallic spheroidal nanoparti-
cles. Unfortunately, this approximation has a very limited range of
validity, typically for size parameters smaller than Xeq ≈ 0.1, which
correspond to very small dimensions (λ�60), clearly not sufficient
for many metallic nanoparticles used in experiments.

To overcome this limitation, there have been multiple attempts
to develop more accurate expressions for the polarizabilities, while
retaining the dipolar approximation. These can be found across the
literature with different notations and conventions and not always
explicitly considering the case ε1 > 1 (for example, immersed in
water). We, therefore, summarize the most important ones using
consistent notations.
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All these approximations include the same O(X3) term
accounting for the radiative correction38 to ensure energy conser-
vation. They differ, however, in the O(X2) term, and some also
include a O(X4) correction. They can all be concisely expressed in
the following form:

βw = β0
w

1 −�w(k1c)2 − i 2
3 X3β0

w
, (5)

with �w being the only difference between the various approxima-
tions. In fact, this general shape of Taylor expansion applies to the
polarizability of a small particle of any shape or material.41 Note that
taking �w = 0 corresponds to the electrostatic approximation with
radiative correction (ESA-RC).

One of the first proposed approaches to find �w is called the
modified long-wavelength approximation (MLWA) and includes a
O(X2) term called dynamic depolarization19,20,39 with

�MLWA
z = a2

c2 β0
z , (6)

�MLWA
x = a

c
β0

x (7)

in our notations. This term is derived by considering the uniform
polarization induced inside the particle by an applied electrostatic
field, expanding the electrodynamic field of the induced dipole to
third order in k1 and adding it to the external wave. The O(X2) pref-
actor was, in fact, derived for spherical scatterers, but this approxi-
mation has nevertheless been used for spheroids.19,20 This approach
was revisited more recently for spheroids, with the uniform polar-
ization integrated over the spheroid volume.21 This introduces new
dynamic depolarization factors Dw , which are similar in form to the
static factors Lw ,

Dz = 1 + 3
4

1 + e2

1 − e2 Lz , (8)

Dx = Dy = a
2c
�3

e
atanh(e) −Dz�. (9)

Within this extended MLWA (EMLWA), the correction factors take
the form

�EMLWA
z = Dz

a2

c2 β0
z ,

�EMLWA
x = Dx

a
c

β0
x.

(10)

More approximations involving fitting parameters are discussed in
Ref. 21, but they apply only to the main (βz) resonance of prolate
spheroids.

The MLWA or EMLWA, although better than the
Rayleigh–Gans approximation, also become inaccurate at rela-
tively small size, but it has inspired other approximations where
the dependence of �w is obtained from exact numerical results and
fitted to a simple analytic function. This alternative approach was
first proposed by Kuwata et al.22 who focused on the longitudinal(z) resonance of gold and silver prolate spheroids and found

�K
z = − 3β0

z��−0.4865Lz − 1.046L2
z + 0.8481L3

z�, (11)

+ (k1c)2�0.019 09Lz + 0.1999L2
z + 0.6077L3

z��. (12)

Note that the second term in this expression corresponds to a O(X4)
correction. A similar approach was taken recently by Yu et al.,28

which gave (again only for the z resonance of prolate spheroids)

�Y
z = 3β0

z�0.5593Lz − 0.1�a
c
�2.53(k1c)2�. (13)

One common feature of all these approximations so far is that �z�β0
z

is independent of the material properties (ε).
We have recently proposed an alternative approach,24 where

the exact Taylor expansion of the multipolar T-matrix solution was
carried out rigorously to third order, resulting in a similar functional
form for the approximate polarizabilities [Eq. (5)] with

�T
z = 1

5
ε − 2 − εe2

1 + (ε − 1)Lz
+ 9

25
e2, (14)

�T
x = 1

5
ε − 2 + 3e2

1 + (ε − 1)Lx
− 12

25
e2. (15)

These Taylor expansions were checked numerically using numerical
derivations and should be consistent with the results of Stevenson27

but dramatically simpler. In particular, the results in Ref. 27 are
given as numerators (i.e., Taylor expansions of α), while it has since
been realized that expressing them equivalently as denominators
(i.e., Taylor expansions of α−1) is much more accurate at predict-
ing plasmon resonances. Moreover, expressions in terms of α−1 also
appear naturally in formal treatments of the electromagnetic scatter-
ing problem, for example, using volume-integral equations.40,41 The
main difference between Eqs. (14) and (15) and the previous expres-
sions is that the term �w�β0

w depends non-trivially on the material(ε), which partly explains why the previous approximations are not
as generally applicable. It may be possible to derive �w via a method
similar to the MLWA, but the approach would have to be extended
in order to capture this material dependence.

We studied the accuracy of these approximations by com-
paring their predictions against exact T-matrix results computed
with the SMARTIES codes.17,42 Rather than considering fixed inci-
dence directions separately, we focus on the orientation-averaged
cross sections, where both longitudinal and transverse plasmon res-
onances are visible. Within the dipolar approximation, the cross
sections are obtained directly from the polarizabilities as24,35

�Cext� = 4πk1r3
eq

3
Im{βz + 2βx}, (16)

�Csca� = 8πk4
1r6

eq

9
Im��βz �2 + 2�βx�2�. (17)

For the Kuwata and Yu approximations, we simply take �K
x = �Y

x= 0 since no expressions are readily available. For transverse excita-
tion, they become therefore equivalent to the electrostatic approx-
imation with radiative correction only. To compare different par-
ticle sizes with a common scale, it is convenient to normalize all
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cross sections by a geometric cross section to obtain adimensional
extinction/scattering coefficients (efficiencies). For spheres, the geo-
metric cross section is simply defined as πa2, but for spheroids,
several choices are possible. We here choose πr2

eq, which results in
coefficients

�Qext� = �Cext�
πr2

eq
= 4Xeq

3
Im{βz + 2βx}, (18)

�Qsca� = �Csca�
πr2

eq
= 8X4

eq

9
Im��βz �2 + 2�βx�2�. (19)

In Figs. 1 and 2, we compare the predictions of these approx-
imations to the exact T-matrix solution by calculating the

FIG. 1. Extinction coefficient spectra for silver spheroids of high aspect ratios calcu-
lated from the various approximations: (a) 40 × 120 nm2 prolate, (b) 100 × 20 nm2

oblate, and (c) 60 × 180 nm2 prolate. The rigorous T-matrix reference solution is
plotted as a dashed line. The size parameter Xeq is wavelength-dependent, and
its value at 500 nm is indicated in each case.

FIG. 2. Extinction coefficient spectra for silver spheroids of low aspect ratios calcu-
lated from the various approximations: (a) 50 × 60 nm2 prolate, (b) 60 × 90 nm2

prolate, and (c) 60 × 40 nm2 oblate. The rigorous T-matrix reference solution is
plotted as a dashed line.

orientation-averaged extinction spectrum of silver spheroids in
water for a number of representative parameters: prolate and oblate
spheroids of high (Fig. 1) and low (Fig. 2) aspect ratios with the
size parameter in the range 0.4–0.7. The dielectric function for Ag
was taken from Ref. 43 (B-corrected data). Similar figures were pro-
duced for gold spheroids in water and are given in Appendix A. The
Kuwata, Yu, and Taylor approximations provide the best agreement
for the z-dipolar resonance of prolate spheroids of intermediate
to large aspect ratios. They are very good up to Xeq ∼ 0.5 and
still reasonable at Xeq ∼ 0.7. The MLWA and EMLWA are clearly
worse than these, but do provide some improvements over the sim-
ple ESA-RC. A similar comparison for oblate spheroids was made
in Ref. 20. These plots also highlight several advantages of the
Taylor approximation over Kuwata and Yu. First, it predicts with
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good accuracy the transverse (x) resonance in contrast to all the
other approximations. Second, it is applicable to oblate as easily
as to prolate spheroids. Third, it is much more accurate for low
aspect ratio, sphere-like particles (Fig. 2). A noticeable discrepancy
between all of these approximations and the rigorous T-matrix solu-
tion is the presence of extra resonances in-between the longitudinal
and transverse resonance of the high-aspect ratio spheroids (Fig. 1,
λ ∼ 500 nm). This is expected because these resonances are asso-
ciated with higher multipoles, such as quadrupole and octupole,
while the previously described approximations only apply to the
dipolar response. Other higher-order multipolar resonances are also
likely superimposed in the spectral region of the transverse reso-
nance and could explain the larger discrepancies observed there. We
will now show how these resonances can be simply included within
the same framework of the Taylor approximation obtained from
a T-matrix.

III. QUADRUPOLE AND HIGHER ORDER RESONANCES
While the Taylor dipolar terms are accurate enough for many

practical applications in plasmonics, the series expansion of the far
field to O(X6) also includes a range of higher order multipole con-
tributions, and for sufficiently large particles, these terms can have a
noticeable presence in the optical response. These multipolar terms
were also derived in Ref. 24 from the T-matrix solution, and they
provide an intuitive understanding of how the scattered field is con-
structed in the long-wavelength limit. We briefly summarize the
T-matrix method, and what physical meaning is attached to the
matrix elements.16 In the T-matrix formalism, the basis elements
of the electromagnetic fields are the electric and magnetic multi-
poles. The fields are expressed as series of multipolar components,
and each T-matrix element Tij

nk�m denotes how a particular multi-
pole of degree n and order m (orientation) responds to excitation by
an external multipole of degree k and order m (for spheroids, there is
no coupling between different m values). The superscripts ij indicate
whether the incident ( j) or induced (i)multipoles are of the electric(i, j = 2) or magnetic (i, j = 1) type. For instance, T22

11�0 is the magni-
tude of the electric dipole induced by the electric dipole component
of the incident field, oriented along z (m = 0). This is effectively the
polarizability αz up to a normalization factor. Usually, in plasmonics,
the particles are non-magnetic, so the more significant interactions
are between electric multipoles or the T22

nk�m elements, especially in
the low frequency/small particle limit.

The orientation-averaged extinction cross section is obtained
from the trace of the T-matrix. The only terms of order X6 or less in
this sum are the electric dipole interactions T22

11�m, magnetic dipole
interactions T11

11�m, and electric quadrupole interactions T22
22�m, and

we have

�Cext� = −2π
k2

1
Re�T11

11�0 + T22
11�0 + T22

22�0
+ 2[T11

11�1 + T22
11�1 + T22

22�1 + T22
22�2]� +O(X7). (20)

The orientation-averaged scattering cross section is computed simi-
larly from the sum of the squares of all elements of the T-matrix. To
O(X6), there are 11 independent non-zero matrix elements,

�Csca� = 2π
k2

1
��T11

11�0�2 + �T22
11�0�2 + �T22

22�0�2 + 2�T22
31�0�2

+ 2�T11
11�1�2 + 2�T22

11�1�2 + 4�T21
12�1�2 + 4�T21

21�1�2
+ 4�T22

31�1�2 + 2�T22
22�1�2 + 2�T22

22�2�2� +O(X10). (21)

Note that this expression is only correct up to order O(X9), i.e.,
the error is of order O(X10), because the dipole terms will have
terms of this order that are not accounted for within the approxi-
mation of Eq. (5). In fact, all but the first two dipolar elements are
also of order X10 themselves so could, in principle, be ignored, but
we have included them because they have resonances in different
parts of the spectrum and may become important in regions where
the dipole terms are small, as shown in Fig. 6 in Appendix B. The
lowest order approximations for all matrix elements were derived
in Ref. 24, including their radiative corrections. For convenience,
the expressions are summarized in Appendix C. A Matlab func-
tion is also provided as the supplementary material, to evaluate
these cross sections for any input size, shape, dielectric function, and
frequency.

Figure 3 shows the individual contribution to the extinction
spectra of all the matrix elements [correct to O(X6)] for two

FIG. 3. Individual contributions from each T-matrix element in the sum to obtain the
approximate orientation-averaged extinction spectrum [Eq. (18)] for a representa-
tive prolate (a) and oblate (b) silver spheroid in water. The sum of these terms
[Eq. (18)] is also shown as a black solid line and the rigorous T-matrix solution
as a dashed line. The wavelength-dependent size parameter Xeq is approximately
the same for both and given on the top x-axis.
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example prolate and oblate silver spheroids in water. In plasmon-
ics, the electric quadrupole excitations T22

22�m tend to be the leading
higher order corrections.44 There are three quadrupole moments
that may be excited for m = 0, 1, 2, and each has their own reso-
nant frequency. The magnetic dipole term T11

11�1 also has a resonance
similar to T22

22�1. The contribution of T11
11�0 is negligible as it has no res-

onance at this order. We note that the Fröhlich frequency of these
higher-order resonances tends to be near the dipolar x resonance,
so what may appear as simply a dipole resonance is actually a sum
of different orders, where these higher-order contributions enhance
and/or spread the peak and may interfere. Including these higher-
order terms results in an improved agreement with the exact results,
but some discrepancies remain. Notably, the exact high-order reso-
nances are redshifted compared to our approximate expressions (but
the correct strength is predicted). This discrepancy is caused by a
similar retardation effect as observed for the electrostatic dipole res-
onance. This shift could, in principle, be corrected by including the
next order correction [O(X7)], although it could be a difficult task to
determine it analytically. Nevertheless, the approximation provides
a practical means to interpret the origin of each resonance peak. For
example, the longest wavelength quadrupole peak can be attributed
to m = 0 for the prolate spheroid but to m = 2 for the oblate spheroid.
A similar analysis can be carried out for the scattering spectrum, but
the four additional terms appearing in its expression are negligible
for the chosen parameters and are not discussed further here. In
addition, we can note that for gold, the higher-order resonances are
much less pronounced due to the high losses in that spectral region,
which explains the relatively better agreement with predictions of
the dipolar approximation (see Appendix A).

Finally, it is worth highlighting that in the small size limit,
the resonances of the T-matrix elements generally occur when
1 + (ε(ω) − 1)Lm

n = 0, where Lm
n are generalized multipole depo-

larization factors.45–48 For dipoles, they reduce to the well-known
expressions L0

1 = Lz , L1
1 = Lx = Ly, (3) and (4), while for quadrupoles,

L0
2, L1

2, L2
2 are given in Appendix C. These expressions could be used

for a further analytical description of these resonances.

IV. CONCLUSION
We have shown that the recently derived exact Taylor expan-

sion of the T-matrix solution24 provides a simple approach
to compute the orientation-averaged optical spectra of metallic
spheroidal nanoparticles. For the dipolar resonances/polarizabilities,
the approximation has the same functional form [Eq. (5)] as in pre-
vious studies, such as those based on the MLWA, but uses a different
expression for the dynamic correction term. It provides a better
approximation for both oblate and prolate spheroids over a wider
range of material and geometric parameters. It also provides a sim-
ple means to include and study the effect of higher-order resonances.
This approximation will therefore be useful for a routine comparison
with experiments and for further theoretical developments where
the full exact solution is too complex to be handled analytically.

SUPPLEMENTARY MATERIAL

See supplementary material for an example Matlab function
getTmatrixApprox.m, which computes the approximate T-matrix
elements and derived optical properties.
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APPENDIX A: FIGURES FOR GOLD SPHEROIDS
IN WATER

The equivalent of Figs. 1 and 2 but for gold instead of silver are
presented in Figs. 4 and 5. The gold dielectric function is taken from
Ref. 49 (SC data).

APPENDIX B: FIGURE FOR SCATTERING CROSS
SECTION

The equivalent of Fig. 3, but for the scattering cross section, is
presented in Fig. 6.

APPENDIX C: EXPLICIT EXPRESSIONS FOR MATRIX
ELEMENTS

Following Ref. 24, to account for the radiative correction, the
T-matrix elements are expressed in terms of the K matrix with
T = iK(I − iK)−1. All expressions for matrix elements below are
correct to O(X6).

For m = 0, we have

T11
11�0 = iK11

11�0
1 − iK11

11�0
, (C1)

T22
22�0 = iK22

22�0
1 − iK22

22�0
, (C2)

T22
11�0 = iK0X3

1 −�0X2 − iK0X3 , (C3)

T22
31�0 = T22

13�0 = i
√

14e2

175 K0X5

1 −�0X2 − iK0X3 , (C4)

where �0 is given in Eq. (14) and K0 is related to the static dipolar
polarizability along the z axis, αzz ,

J. Chem. Phys. 156, 104110 (2022); doi: 10.1063/5.0085687 156, 104110-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0085687
https://www.scitation.org/doi/suppl/10.1063/5.0085687


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 4. Extinction coefficient spectra for gold spheroids of high aspect ratios calcu-
lated from the various approximations: (a) 40 × 120 nm2 prolate, (b) 100 × 20 nm2

oblate, and (c) 60 × 180 nm2 prolate. The rigorous T-matrix reference solution is
plotted as a dashed line.

K0 = 2
9h2

s2 − 1
1 + (s2 − 1)Lz

= 2
3c3

αzz

4πε1
, (C5)

where h = c�a is the aspect ratio, e =�1 − 1�h2 is the eccentricity
(imaginary for oblate spheroids), s is the relative refractive index(s2 = ε), and Lz is given in Eq. (3). The K-matrix elements are

K22
13�0 = K22

31�0 = 2e2√14
1575h2

s2 − 1
1 + (s2 − 1)Lz

X5, (C6)

K11
11�0 = s2 − 1

45h4 X5, (C7)

K22
22�0 = 3 − e2

225h2
s2 − 1

1 + (s2 − 1)L0
2

X5, (C8)

FIG. 5. Extinction coefficient spectra for gold spheroids of low aspect ratios calcu-
lated from the various approximations: (a) 50 × 60 nm2 prolate, (b) 60 × 90 nm2

prolate, and (c) 60 × 40 nm2 oblate. The rigorous T-matrix reference solution is
plotted as a dashed line.

with

L0
2 = 3

2
1 − e2

e3 �3 − e2

e2 atanh(e) − 3
e
�. (C9)

For m = 1, we have

T11
11�1 = iK11

11�1
1 − i�K11

11�1 − (K21
21�1)2�K11

11�1� , (C10)

T22
22�1 = iK22

22�1
1 − i�K22

22�1 − (K21
21�1)2�K22

22�1� , (C11)
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FIG. 6. Individual contributions from each T-matrix element in the sum to obtain the
approximate orientation-averaged scattering spectrum [Eq. (19)] for a representa-
tive prolate (a) and oblate (b) silver spheroid in water. The sum of these terms
[Eq. (19)] is also shown as a black solid line and the rigorous T-matrix solution as
a dashed line. Some terms from Eq. (19) are negligible and not shown.

T21
21�1 = −T12

12�1 = iK21
21�1

1 − i�K11
11�1 + K22

22�1� , (C12)

T22
11�1 = iK1X3

1 −�1X2 − iK1X3 , (C13)

T21
12�1 = −T12

21�1 = iK21
12�1

1 − iK1X3 , (C14)

T22
31�1 = T22

13�1 = iK22
31�1

1 − iK1X3 . (C15)

�1 is given in Eq. (15) and K1 is related to the static dipolar
polarizability along the x or y axis, αxx = αyy,

K1 = 2
9h2

s2 − 1
1 + (s2 − 1)Lx

= 2
3c3

αxx

4πε1
, (C16)

where Lx is given in Eq. (4). The K-matrix elements are

K22
11�1 = K1X3

1 −�1X3 , (C17)

K22
13�1 = K22

31�1 = 2e2√21
525

K1X5, (C18)

K21
12�1 = −K12

21�1 = ie2√15
150

K1X5, (C19)

K11
11�1 = (s

2 − 1)�h2(2 − e2)2 + 4(s2 − 1)L1
2�

90h4(2 − e2)�1 + (s2 − 1)L1
2� X5, (C20)

K22
22�1 = 2 − e2

150h2
s2 − 1

1 + (s2 − 1)L1
2

X5, (C21)

K21
21�1 = −K12

12�1 = ie2X5

30
√

15h2

s2 − 1
1 + (s2 − 1)L1

2
, (C22)

with

L1
2 = −2 − e2

2e4 �3 1 − e2

e
atanh(e) − 3 + 2e2�. (C23)

Finally, for m = 2, we have

T22
22�2 = iK22

22�2
1 − iK22

22�2
, (C24)

with

K22
22�2 = X5

75h4
s2 − 1

1 + (s2 − 1)L2
2

(C25)

and

L2
2 = 1

4e4 �3
e
(1 − e2)2atanh(e) − 3 + 5e2�. (C26)

REFERENCES
1K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance
spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
2E. C. Le Ru and P. G. Etchegoin, Principles of Surface Enhanced Raman
Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009).
3J. Langer et al., “Present and future of surface-enhanced Raman scattering,” ACS
Nano 14, 28–117 (2020).
4X. X. Han, R. S. Rodriguez, C. L. Haynes, Y. Ozaki, and B. Zhao, “Modified optical
absorption of molecules on metallic nanoparticles at sub-monolayer coverage,”
Nat. Rev. Methods Primers 1(1), 87 (2022).
5G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, K.
Moth-Poulsen, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling
between nanoparticle plasmons and organic dyes using scattering and absorption
spectroscopy,” J. Phys. Chem. C 120(37), 20588–20596 (2016).
6R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A.
Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong cou-
pling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127
(2016).
7B. L. Darby, B. Auguié, M. Meyer, A. E. Pantoja, and E. C. Le Ru, “Modified opti-
cal absorption of molecules on metallic nanoparticles at sub-monolayer coverage,”
Nat. Photonics 10(1), 40 (2016).
8T. E. Tesema, H. Kookhaee, and T. G. Habteyes, “Extracting electronic transition
bands of adsorbates from molecule–plasmon excitation coupling,” J. Phys. Chem.
Lett. 11(9), 3507–3514 (2020).
9A. Politano, A. Cupolillo, G. Di Profio, H. A. Arafat, G. Chiarello, and E.
Curcio, “When plasmonics meets membrane technology,” J. Phys.: Condens.
Matter 28(36), 363003 (2016).
10C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-
oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2),
95–103 (2014).

J. Chem. Phys. 156, 104110 (2022); doi: 10.1063/5.0085687 156, 104110-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1146/annurev.physchem.58.032806.104607
https://doi.org/10.1021/acsnano.9b04224
https://doi.org/10.1021/acsnano.9b04224
https://doi.org/10.1038/s43586-021-00083-6
https://doi.org/10.1021/acs.jpcc.6b00219
https://doi.org/10.1038/nature17974
https://doi.org/10.1038/nphoton.2015.205
https://doi.org/10.1021/acs.jpclett.0c00734
https://doi.org/10.1021/acs.jpclett.0c00734
https://doi.org/10.1088/0953-8984/28/36/363003
https://doi.org/10.1088/0953-8984/28/36/363003
https://doi.org/10.1038/nphoton.2013.238


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

11B. Gallinet, J. Butet, O. J. F. Martin, “Numerical methods for nanophotonics:
Standard problems and future challenges,” Laser Photonics Rev. 9(6), 577–603
(2015).
12M. Yurkin, “Computational approaches for plasmonics,” in Handbook of
Molecular Plasmonics, edited by S. D’Agostino (Pan Stanford Publishing, 2013),
pp. 83–135.
13A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simu-
lations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A
26(4), 732–740 (2009).
14T. V. Raziman, W. R. C. Somerville, O. J. F. Martin, and E. C. Le Ru, “Accuracy
of surface integral equation matrix elements in plasmonic calculations,” J. Opt.
Soc. Am. B 32(3), 485–492 (2015).
15J. Grand and E. C. Le Ru, “Practical implementation of accurate finite-element
calculations for electromagnetic scattering by nanoparticles,” Plasmonics 15(1),
109–121 (2020).
16M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption,
and Emission of Light by Small Particles, 3rd ed. (Cambridge University Press,
Cambridge, 2002).
17W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “Accurate and convergent
T-matrix calculations of light scattering by spheroids,” J. Quant. Spectrosc. Radiat.
Transfer 160, 29–35 (2015).
18C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small
Particles (Wiley, 1983).
19M. Meier and A. Wokaun, “Enhanced fields on large metal particles: Dynamic
depolarization,” Opt. Lett. 8(11), 581–583 (1983).
20K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties
of metal nanoparticles: The influence of size, shape, and dielectric environment,”
J. Phys. Chem. B 107, 668–677 (2003).
21A. Moroz, “Depolarization field of spheroidal particles,” J.Opt. Soc. Am. B 26(3),
517–527 (2009).
22H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scatter-
ing from metal nanoparticles: Practical analysis beyond Rayleigh approximation,”
Appl. Phys. Lett. 83(22), 4625–4627 (2003).
23D. Schebarchov, B. Auguié, and E. C. Le Ru, “Simple accurate approximations
for the optical properties of metallic nanospheres and nanoshells,” Phys. Chem.
Chem. Phys. 15(12), 4233–4242 (2013).
24M. Majic, L. Pratley, D. Schebarchov, W. R. Somerville, B. Auguié, and E. C.
Le Ru, “Approximate T-matrix and optical properties of spheroidal particles to
third order with respect to size parameter,” Phys. Rev. A 99(1), 013853 (2019).
25M. Januar, B. Liu, J.-C. Cheng, K. Hatanaka, H. Misawa, H.-H. Hsiao, and K.-C.
Liu, “Role of depolarization factors in the evolution of a dipolar plasmonic spectral
line in the far-and near-field regimes,” J. Phys. Chem. C 124(5), 3250–3259 (2020).
26I. L. Rasskazov, V. I. Zakomirnyi, A. D. Utyushev, P. S. Carney, and A. Moroz,
“Remarkable predictive power of the modified long wavelength approximation,”
J. Phys. Chem. C 125(3), 1963–1971 (2021).
27A. F. Stevenson, “Electromagnetic scattering by an ellipsoid in the third
approximation,” J. Appl. Phys. 24(9), 1143–1151 (1953).
28R. Yu, L. M. Liz-Marzán, and F. J. García de Abajo, “Universal analytical
modeling of plasmonic nanoparticles,” Chem. Soc. Rev. 46, 6710–6724 (2017).
29H. Y. Chung, P. T. Leung, and D. P. Tsai, “Dynamic modifications of polariz-
ability for large metallic spheroidal nanoshells,” J. Chem. Phys. 131(12), 124122
(2009).
30V. Grigoriev, N. Bonod, J. Wenger, and B. Stout, “Optimizing nanoparticle
designs for ideal absorption of light,” ACS Photonics 2(2), 263–270 (2015).

31Y. Wu, Z. Hu, X.-T. Kong, J. C. Idrobo, A. G. Nixon, P. D. Rack, D. J. Masiello,
and J. P. Camden, “Infrared plasmonics: STEM-EELS characterization of Fabry-
Pérot resonance damping in gold nanowires,” Phys. Rev. B 101(8), 085409 (2020).
32A. L. Schmucker, N. Harris, M. J. Banholzer, M. G. Blaber, K. D. Osberg, G.
C. Schatz, and C. A. Mirkin, “Correlating nanorod structure with experimen-
tally measured and theoretically predicted surface plasmon resonance,” ACS Nano
4(9), 5453–5463 (2010).
33I. Zoric, M. Zach, B. Kasemo, and C. Langhammer, “Gold, platinum, and alu-
minum nanodisk plasmons: Material independence, subradiance, and damping
mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
34N. G. Khlebtsov and E. C. Le Ru, “Analytical solutions for the surface- and
orientation-averaged SERS enhancement factor of small plasmonic particles,”
J. Raman Spectrosc. 52, 285–295 (2021).
35N. G. Khlebtsov, “Extinction and scattering of light by nonspherical plasmonic
particles in absorbing media,” J. Quant. Spectrosc. Radiat. Transfer 280, 108069
(2022).
36P. Barber and C. Yeh, “Scattering of electromagnetic waves by arbitrarily shaped
dielectric bodies,” Appl. Opt. 14(12), 2864–2872 (1975).
37W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “Severe loss of precision in
calculations of T-matrix integrals,” J. Quant. Spectrosc. Radiat. Transfer 113(7),
524–535 (2012).
38E. C. Le Ru, W. R. C. Somerville, and B. Auguié, “Radiative correction in approx-
imate treatments of electromagnetic scattering by point and body scatterers,”
Phys. Rev. A 87(1), 012504 (2013).
39E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of
surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum,
gallium, indium, zinc, and cadmium,” J. Phys. Chem. 91(3), 634–643 (1987).
40A. E. Moskalensky and M. A. Yurkin, “Energy budget and optical theorem for
scattering of source-induced fields,” Phys. Rev. A 99(5), 053824 (2019).
41A. E. Moskalensky and M. A. Yurkin, “A point electric dipole: From basic optical
properties to the fluctuation–dissipation theorem,” Rev. Phys. 6, 100047 (2021).
42W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “SMARTIES: User-friendly
codes for fast and accurate calculations of light scattering by spheroids,” J. Quant.
Spectrosc. Radiat. Transfer 174, 39–55 (2016).
43H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and
M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137
(2015).
44U. Kreibig and M. Vollmer, “Optical properties of metal clusters,” in Material
Science (Springer, 1995).
45J. C. E. Sten, “Multiline singularities applied to low-frequency scattering by a
prolate spheroid,” Compel 16(2), 92–107 (1997).
46R. C. Voicu and T. Sandu, “Analytical results regarding electrostatic resonances
of surface phonon/plasmon polaritons: Separation of variables with a twist,” Proc.
R. Soc. A 473(2199), 20160796 (2017).
47M. Majic, F. Gray, B. Auguié, and E. C. Le Ru, “Electrostatic limit of the
T-matrix for electromagnetic scattering: Exact results for spheroidal particles,”
J. Quant. Spectrosc. Radiat. Transfer 200, 50–58 (2017).
48M. Majic and E. C. Le Ru, “Quasistatic limit of the electric-magnetic coupling
blocks of the T-matrix for spheroids,” J. Quant. Spectrosc. Radiat. Transfer 225,
16–24 (2019).
49R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman,
and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147
(2012).

J. Chem. Phys. 156, 104110 (2022); doi: 10.1063/5.0085687 156, 104110-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1002/lpor.201500122
https://doi.org/10.1364/josaa.26.000732
https://doi.org/10.1364/josab.32.000485
https://doi.org/10.1364/josab.32.000485
https://doi.org/10.1007/s11468-019-01014-8
https://doi.org/10.1016/j.jqsrt.2015.03.020
https://doi.org/10.1016/j.jqsrt.2015.03.020
https://doi.org/10.1364/ol.8.000581
https://doi.org/10.1021/jp026731y
https://doi.org/10.1364/josab.26.000517
https://doi.org/10.1063/1.1630351
https://doi.org/10.1039/c3cp44124e
https://doi.org/10.1039/c3cp44124e
https://doi.org/10.1103/physreva.99.013853
https://doi.org/10.1021/acs.jpcc.9b10485
https://doi.org/10.1021/acs.jpcc.0c09774
https://doi.org/10.1063/1.1721462
https://doi.org/10.1039/c6cs00919k
https://doi.org/10.1063/1.3236528
https://doi.org/10.1021/ph500456w
https://doi.org/10.1103/physrevb.101.085409
https://doi.org/10.1021/nn101493t
https://doi.org/10.1021/nn102166t
https://doi.org/10.1002/jrs.5980
https://doi.org/10.1016/j.jqsrt.2022.108069
https://doi.org/10.1364/ao.14.002864
https://doi.org/10.1016/j.jqsrt.2012.01.007
https://doi.org/10.1103/physreva.87.012504
https://doi.org/10.1021/j100287a028
https://doi.org/10.1103/physreva.99.053824
https://doi.org/10.1016/j.revip.2020.100047
https://doi.org/10.1016/j.jqsrt.2016.01.005
https://doi.org/10.1016/j.jqsrt.2016.01.005
https://doi.org/10.1103/physrevb.91.235137
https://doi.org/10.1108/03321649710172789
https://doi.org/10.1098/rspa.2016.0796
https://doi.org/10.1098/rspa.2016.0796
https://doi.org/10.1016/j.jqsrt.2017.05.031
https://doi.org/10.1016/j.jqsrt.2018.12.017
https://doi.org/10.1103/physrevb.86.235147

