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Abstract

The optical properties of nanoparticles can be substantially affected by their assembly in compact aggregates.
This is a common situation notably for nanoparticles synthesised and self-assembled into rigid clusters
in colloidal form, where they may be further characterised or used in spectroscopic applications. The
theoretical description of such experiments generally requires averaging the optical response over all possible
cluster orientations, as they randomly orient themselves over the course of a measurement. This averaging
is often done numerically by simulating the optical response for several directions of incidence, using a
spherical cubature method. The simulation time increases with the number of directions and can become
prohibitive, yet few studies have examined the trade-off between averaging accuracy and computational cost.
We benchmark seven commonly-used spherical cubature methods for both far-field and near-field optical
responses for a few paradigmatic cluster geometries: dimers of nanospheres and of nanorods, and a helix.
The relative error is rigorously evaluated in comparison to analytical results obtained with the superposition
T -matrix method. Accurate orientation averaging is especially important for quantities relating to optical
activity, the differential response to left and right circularly polarised light, and our example calculations
include in particular far-field circular dichroism and near-field local degree of optical chirality.

1. Introduction

Light scattering by nanoparticles underpins
many important applications, notably in the realm
of optical spectroscopy1, nano-optics2, and light-
harvesting technologies3. With advances in nano-
technology and synthesis, a wealth of artificial
nanostructures have been proposed that combine a
number of nanoparticles into rigid aggregates with
well-defined positions and orientations in space4,
such as, for example, oligomers obtained by top-
down lithography5,6 or helices and other chiral
nanostructures obtained by bottom-up assembly7.
The optical properties of such natural or artificial
nano-aggregates can reveal a complex interplay be-
tween the individual nanoparticles’ response, and
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collective multiple-scattering interactions that de-
pend crucially on the relative positions and orien-
tations of neighbouring particles5,8–10. Bottom-up
synthesis and assembly of nanoparticles in partic-
ular enables fine-tuned optical properties, and for
such samples the particles or clusters of particles
are often fabricated, characterised, and used in col-
loidal form. Over the typical time-scale of an op-
tical measurement, these compound scatterers in
brownian motion assume random orientations, as a
whole.

The superposition T -matrix framework is a pow-
erful method for the theoretical description of
light scattering by such aggregates11–13; it enables
fast and accurate computations of far-field cross-
sections as well as near fields14–16. A particu-
lar strength of the method lies in the prediction
of orientation-averaged quantities11,17,18: the T -
matrix captures the optical response of a scatterer
independently of the incident field, and the proper-
ties of vector spherical harmonics used to describe
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Figure 1: Schematic illustration of the light scattering prob-
lem under consideration. N nanoparticles, spherical or non-
spherical, are placed at arbitrary positions and orientations
in a fixed reference frame. This cluster of particles is rigidly
held together, but randomly-oriented with respect to inci-
dent light (a plane wave with left (L) or right (R) circular
polarisation and incident wavevector kinc oriented by Euler
angles (ϕ, θ) in a reference frame attached to the cluster).
We seek the orientation-averaged optical response in the far-
field (absorption, scattering, extinction and circular dichro-
ism cross-sections), and in the near-field (local electric field
intensity |E|2 and local degree of optical chirality C ) at a
specific position P , fixed in the cluster’s reference frame.

incident and scattered fields yield analytical for-
mulas for orientation-averaged optical properties.
This powerful formalism enables benchmark cal-
culations for various quantities of interest, which
include orientation-averaged extinction, scattering
and absorption19,20, circular dichroism21, but also
near-field intensity22 and local degree of optical chi-
rality23,24. Although analytical, these orientation-
averaged expressions can become quite involved in
the case of near-field quantities, requiring the costly
evaluation of translation matrices for each evalua-
tion point. As a result, evaluating such analytical
formulas is not necessarily faster than performing
purely numerical orientation averaging by simulat-
ing the optical properties for a discrete number of
incidence directions with a numerical cubature25,26.
The analytical procedure can also be less amenable
to parallel computing, compared to the “embarrass-
ingly parallel” problem of simulating multiple di-
rections of incidence. Such considerations suggest
that in many practical applications, where a rel-
ative accuracy of 10−3 is often sufficient in view
of other sources of uncertainty, a numerical cuba-
ture may be advantageous even when using the T -
matrix method. In our timing experiments using

terms13, the analytical orientation averaging for-
mulas are typically faster for far-field quantities,
while for near-field quantities we find that in prac-
tice the cubature approach is generally preferable.

In many other popular electromagnetic simula-
tion methods such as Finite-Difference Time Do-
main (FDTD)27, Finite-Element Method (FEM)28,
Discrete Dipole Approximation (DDA)29, the
Maxwell equations are solved for a given config-
uration and a specific incident field, and simulat-
ing a new incidence direction incurs almost the full
computational cost. For such computational tech-
niques, which do not provide analytical orientation-
averaged results and have their own sources of un-
certainty, it can be very useful to have accurate
benchmark results to compare against, when as-
sessing the accuracy of orientation averaging and
deciding on the number of incidence directions to
be simulated. We provide below such example com-
putations for several model geometries.

Orientation averaging of optical properties can be
defined as an integral over Euler angles (ϕ, θ), refer-
ing to the orientation of the wavevector in spherical
coordinates for a plane wave incident on the scat-
terer (Fig. 1),

〈f〉 = 1

4π

∫ π

0

∫ 2π

0

f(ϕ, θ) sin θ dϕdθ. (1)

where the quantity f corresponds here to an optical
response of interest such as far-field cross-sections
or near-field intensities at a fixed location P in the
scatterer’s reference frame. Note that the scatterer
is itself a compound object in the case of a particle
cluster, and in this work we assume that the com-
ponent particles are rigidly-held together by a tem-
plate with negligible influence on optical properties.
This averaging over all possible incidence directions
is often complemented by a further averaging over
polarisation19,20,30,31. In the case of circular po-
larisation, relevant to the simulation of chiroptical
spectroscopy experiments32, we may simply calcu-
late the orientation-averaged result for left (L) and
right (R) polarisations separately, and average both
if an unpolarised optical response is sought. Note
that this procedure only works for quadratic quan-
tities expressed in terms of electric and magnetic
fields, as considered in this work; the calculation
of enhancement factors in surface-enhanced Raman
scattering requires more care, as some cross-terms
are also present33.

In practice, the integral in Eq. 1 can be approx-
imated by a finite sum using a variety of spherical
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Figure 2: Schematic illustration of the 7 spherical cubature rules considered in this work. The nodes (ϕi, θi), i = 1 . . . Ninc

are displayed for Ninc ≈ 180 (exact value differs for some cubature rules, as shown in ESI Fig. SI1), in 3D spherical polar
coordinates (orthographic projections along z (top view) and x (side view)). Gauß-Legendre and Lebedev cubatures have
non-equal weights, here illustrated with size and colour.

cubature methods25,34,35,

〈f〉 ≈
i=1...Ninc∑
ϕi,θi

f(ϕi, θi)wi, (2)

where the integrand is evaluated at a finite num-
ber Ninc of incidence directions (ϕi, θi), each value
scaled by a corresponding weight wi. Multiple cu-
bature methods have been proposed, differing in
their prescription for the nodes (ϕi, θi), and asso-
ciated weights wi (Fig. 2). For the finite sum in
Eq. 2, with number of nodes Ninc, the accuracy of
a given cubature against the analytical result 〈f〉
can be quantified in the relative error,

ε(Ninc) :=

∣∣∣∣∣∣
(∑i=1...Ninc

ϕi,θi
f(ϕi, θi)wi

)
− 〈f〉

〈f〉

∣∣∣∣∣∣ (3)

(assuming 〈f〉 6= 0).
We detail below a comparison of seven different

numerical cubature methods and their application
in orientation averaging of optical properties – both
in the far-field and in the near-field. Their rela-
tive performance is first illustrated on toy problems
consisting of known integrands, followed by realistic
light scattering problems of varying degree of diffi-
culty. We use the analytical results as a benchmark
for accuracy, and compare the convergence rate of
the different methods with increasing number of in-
cidence angles.

2. Spherical cubature

We implemented seven well-known methods of
spherical cubature, namely (i) ‘grid’ – a cartesian

product of mid-point rules in (ϕ, cos θ), ; (ii) ‘ran-
dom’, also known as Monte Carlo – a random sam-
pling of points in (ϕ, cos θ); (iii) ‘QMC’ – a quasi
Monte Carlo sampling over (ϕ, cos θ) based on a
Halton sequence25, (iv) ‘Fibonacci’ – a relatively
uniform spiral covering of the sphere25; (v) ‘spheri-
cal t-design’ 36 ; (vi) ‘Gauß-Legendre’ – a cartesian
product of Gauß-Legendre 1D quadrature for cos θ,
and a mid-point rule for the azimuth ϕ ; and (vii)
‘Lebedev’ 37. More details are given in ESI Section
S1 regarding the implementation of these meth-
ods, which we also make available in the R package
"cubs"38. Figure 2 depicts the angular distribution
of Ninc ≈ 180 nodes for each cubature, noting that
the exact number of nodes varies with each method,
some having coarser steps between possible values
(this granularity is presented in ESI Fig. SI1).

In order to validate the implementation of each
cubature method, we first tested their accuracy
against analytical cases, following Ref.34,39 (Fig. 3),

f1(x, y, z) =1 + x+ y2 + x2y + x4+

+ y5 + x2y2z2, (4)

f2(x, y, z) =
3
4e
[−(9x−2)2/4−(9y−2)2/4−(9z−2)2/4]

+ 3
4e
[−(9x+1)2/49−(9y+1)/10−(9z+1)/10]

+ 1
2e
[−(9x−7)2/4−(9y−3)2/4−(9z−5)2/4]

− 1
5e
[−(9x−4)2−(9y−7)2−(9z−5)2], (5)
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Figure 3: Convergence of different spherical cubature rules on 3 analytical integrands. (Top, panels a–d) Colour maps of the
integrands, scaled to the same colour range for ease of comparison. Panel (d) presents the same integrand f3 as panel (c),
rotated by an arbitrary angle θ = 27.1 degrees. (Bottom, panels e–h) Convergence plots in log-log scale for 7 spherical cubature
methods. The relative error is defined in Eq. 3 in reference to the known analytical result for each integral: 〈f1〉 = 216π/35,
〈f2〉 = 6.6961822200736179523 . . . , 〈f3〉 = 1.

with the usual spherical coordinates,

x =cos(ϕ) sin(θ) (6)
y =sin(ϕ) sin(θ) (7)
z =cos(θ), (8)

and a spherical harmonic

f3(ϕ, θ) =
1
4π + cos(12ϕ) sin12(θ), (9)

where we added a constant to ensure the denomi-
nator of Eq. 3 does not vanish.

The performance of the seven cubature methods
differs markedly on these examples, and we dis-
tinguish two families: ‘naive’ or ‘generic’ methods
comprising ‘grid’, ‘random’, ‘QMC’, ‘Fibonacci’,
which show poor convergence and reach a limited
accuracy for a few hundreds points; in contrast,
the three methods ‘Gauß-Legendre’, ‘Lebedev’, and
‘spherical t-design’ show much faster convergence,
and reach excellent accuracy in double precision
arithmetic for these three examples. The relative
error for these methods presents an abrupt drop
before plateauing at near-maximum precision after
a certain number Ninc, the value of which depends
on the integrand. f1 only requires Ninc ∼ 20 to
reach this plateau, while f2 requires Ninc ∼ 4000,
which we can attribute to the increased angular
complexity of the integrand. This aspect can be
quantified more formally by considering a spherical

harmonic (SH) decomposition of the integrand, and
comparing the relative magnitude of each spherical
harmonic coefficient40, as we discuss further below.
The example of f3 corresponds to a pure spherical
harmonic, namely Y 0

12, with a convergence falling
in-between the two previous cases. We note that
integrands with high symmetry, such as f3, can
prove misleading in such comparisons: a regular
‘grid’ method, or the Fibonacci sequence, for ex-
ample, here appear to approximate accurately the
integral at low Ninc values, but only because the
sampling of points on a regular grid coincides with
a symmetry of the integrand. This artificial coinci-
dence is removed in the right-most panel, where the
same integrand f3 is now rotated by a non-trivial
angle 21.7◦ about the z-axis. The coincidental sam-
pling of f3 at symmetrical points, leading to can-
cellations in the cubature, no longer occurs, and
both ‘grid’ and ‘Fibonacci’ methods return to slow
convergence rates. In contrast, ‘Gauß-Legendre’,
‘Lebedev’, and ‘spherical t-design’ are unaffected by
this rotation. Rotating a spherical harmonic Y ml
mixes different angular momentum (m) values, but
only within a given degree, and f3 is therefore trans-
formed into a weighted sum of spherical harmonics
Y m12 ,m = −12 . . . 12. These three cubature methods
are known to integrate exactly all spherical harmon-
ics up to a specific degree, regardless of m. For an
integrand composed of degree ≤ 12 spherical har-
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monic(s), the plateau is reached atNinc = 74 (Lebe-
dev), Ninc = 86 (spherical t-design), and Ninc = 98
for Gauß-Legendre. Although Gauß-Legendre is
somewhat less efficient than the other two, and has
fewer available numbers of points, it may be the
preferred method in configurations with a known
symmetry – for example where only one octant of
the full solid angle needs to be considered, or if
the integrand is invariant in ϕ – in which case the
choice of nodes in θ and ϕ may be adapted accord-
ingly, with more freedom than for the Lebedev and
spherical t-design methods.

These examples were chosen for demonstration
purposes, but our interest is to approximate the in-
tegral of light-scattering quantities, which generally
admit no analytical expression. The integrand will
be computed numerically with the superposition
T -matrix method13, and particular configurations
can yield very differently-behaved integrands. Typ-
ically, we expect that a compact, small-sized cluster
(compared to the wavelength) will show a relatively
featureless angular pattern, and spherical cubatures
of small order will suffice for an accurate orientation
averaging process. Indeed, averaging the response
along x, y, z axes is a commonly-used procedure
for orientation-averaging in this regime10. Larger
particles and/or clusters of particles may however
show very directional responses, such as the pho-
tonic jet effect in large Mie scatterers41, or waveg-
uide modes along chains of particles40 or dielectric
particles with a high aspect ratio42.

An important question we set out to investigate
is the variation in orientation averaging difficulty,
namely the number of incidence angles required to
reach a given accuracy, with the light scattering
quantity of interest. Previous studies have been
devoted to spherical cubature for far-field cross-
sections25, but it is not clear if the conclusions are
equally-applicable to near-field quantities; in fact,
the general expectation is that the near-field will
be more challenging, as it typically involves higher-
order multipoles in the T -matrix framework (or Mie
theory, for single spheres). We also hypothesise
that chiroptical properties, namely the differential
response to left and right circularly polarised light,
in both far-field and near-field settings, may prove
more challenging for orientation averaging than un-
polarised responses. The following examples were
chosen to explore these questions on several cluster
geometries of interest.

3. Dimer
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Figure 4: Orientation averaging of light scattering by a chi-
ral dimer of gold nanorods immersed in water (n = 1.33).
The two nanorods are modelled as prolate spheroids with
semi-axes a = b = 30 nm, c = 80 nm; with centre-to-
centre separation d = 200nm, and dihedral angle ϕ = π/4
about the dimer axis. (a–b) Convergence of the far-field ex-
tinction (a) and scattering (b) cross-section at wavelength
λ = 800nm, for different cubature rules. (c–d) Correspond-
ing convergence of circular dichroism. (e) Schematic view of
the dimer structure.

Our first illustration considers light scattering by
a ‘fingers crossed’ dimer of gold nanorods43, which
has attracted considerable interest in recent years
as a prototypal structure for chiral plasmonics44–51.
We recently revisited this geometry with a focus on
the angular dependence of the chiroptical far-field
properties, namely the circular dichroism in extinc-
tion, scattering and absorption40. Despite its sim-
plicity, involving only two particles, the structure
reveals an interesting response arising from the hy-
bridisation of localised plasmon resonances, and a
balance between absorption and scattering contri-
butions as the size of the structure is varied43. The
angular response is non-trivial: for example, light
incident normal to the dimer axis exhibits no cir-
cular dichroism. For very small dimers this angular
response is relatively smooth nonetheless, and as
a result the orientation-averaged response may be
reasonably approximated by the average over 3 or-
thogonal incidence directions. As the scale of the
dimer increases, however, this is no longer an ac-
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Figure 5: Orientation averaging of light scattering by a dimer of gold spheres, as depicted in panel (a). The nominal dimensions
are r = 50 nm for the sphere radius, and a gap g = 10 nm. We later vary both dimensions simultaneously with a scaling factor s.
The dashed lines correspond to the results for a dimer tilted by Euler angles ϕ = 12◦, θ = 21◦ from the z axis. (a) Convergence
of 7 cubature rules for the local degree of chirality C at the mid-gap point P between the spheres. The scaling factor is
s = 1 in this plot. (b) Variation of the number of cubature angles required to reach an accuracy of 10−9 as a function of the
dimer’s scaling factor, s. (c) Variation of the number of cubature angles required to reach an accuracy of 10−9 as a function
of the wavelength, for the nominal dimer (s = 1). (d) Spherical Harmonic Decomposition of the angular pattern for far-field
extinction (blue symbols), near-field intensity |E|2 (pink symbols), and local degree of chirality C (green symbols), for 2 scale
factors (s = 0.1, solid circles, and s = 1, open triangles). The variable l refers to the order of spherical harmonic.

curate approximation40. We confirm here this ob-
servation with a more complete characterisation of
numerical angular averaging, using the previously-
defined seven cubature methods (Fig. 4). The size
of the dimer is chosen such that the structure ex-
tends to a sizeable fraction of the wavelength at res-
onance, i.e. beyond the Rayleigh regime. In agree-
ment with our earlier observation, the same three
cubature methods stand out (Lebedev, spherical t-
design, Gauß-Legendre), while the others show a
slow convergence with a modest relative accuracy
of ∼ 10−4 requiring hundreds of incidence angles.
For the three best-performers, this number is re-
duced to a few dozen angles, much more practi-
cal with time-consuming numerical methods. Fig-
ure 4 distinguishes between scattering and extinc-
tion (scattering + absorption) cross-sections, but
we find a very similar convergence behaviour. Sim-
ilarly, we considered separately unpolarised cross-
sections and their corresponding circular dichroism
(differential response between left and right polar-
isations), but find that the convergence properties
with respect to orientation averaging are very sim-
ilar in both cases.

Our next example aims to further clarify the dif-
ficulty of orientation averaging, i.e. the number
of incidence angles required for an accurate cuba-
ture, in relation to the geometry of the cluster. In
Fig. 5 we consider a dimer of gold spheres – the
simplest multi-particle cluster –, and vary the scale
of the structure by a factor s (sphere radius and
inter-particle distance are scaled identically). For a

given value of s, we obtain convergence results as
previously discussed (Fig. 5(a) for s = 1, showing
the convergence of C at the mid-point P between
the two spheres, but other quantities reveal a sim-
ilar trend). We also verify that tilting the dimer
away from the z axis (dotted lines in Fig. 5(a)) does
not affect our conclusions; some cubature methods
such as Fibonacci show a more unpredictable con-
vergence with the reduced symmetry, but the trends
are very similar.

The absolute precision of orientation-averaged re-
sults depends not only on the number of incidence
angles, but also on the other parameters of the sim-
ulation. The uncertainties in physical parameters,
such as particle size and shape distribution, ma-
terial properties, etc. often limit the agreement
between theory and experiment to much lower ac-
curacy in many contexts52. The computational
method itself is also subject to other sources of er-
ror, such as the fineness of a mesh when the scatter-
ers are discretised in FEM, FDTD or DDA; in the
T -matrix method employed here, the key conver-
gence parameter is the maximum multipolar order
lmax which is used to truncate field expansions11.
In our implementation, note that lmax refers to
scatterer-centred expansions13,22. Remarkably, we
find no interaction between Ninc and lmax when
studying the convergence of orientation-averaged
quantities. For example, varying lmax from 3 to 20
does not affect the convergence of spherical cuba-
ture (ESI Fig. S2). The net accuracy of the results
is of course lower at lower lmax – it may be just
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10−3 (ESI Fig. S3) while the cubature still reaches
a plateau below 10−13 in the agreement between
numerical cubature and analytical orientation av-
eraging. This suggests that the analytical formu-
las for orientation averaging are also valid at finite
lmax, not requiring the limit lmax → ∞ as some
derivations would seem to imply. Conveniently, this
absence of interaction between Ninc and lmax also
means that we can reliably test cubature conver-
gence at relatively small lmax values.

In practice, many light-scattering calculations do
not require the accuracy achieved by the Levedev,
Gauß-Legendre, or spherical t-design cubatures at
the level where they plateau near double-precision
accuracy; instead a relative accuracy of 10−3−10−5

may often be sufficient for most applications, and
these cubature methods reach such precision with
far fewer evaluations than the other methods. Tak-
ing an arbitrary cutoff value, ε = 10−9 for instance,
we may estimate the number of cubature points re-
quired by each method by simple interpolation, and
trace its dependence on simulation parameters such
as the scale factor s (Figure 5(c)), or the wavelength
(Figure 5(d)). For clarity, we only consider from
now on the three best-performing cubature meth-
ods. Additionally, one should note that the esti-
mated cutoff value may not be exactly obtainable
for a given cubature method; we are however inter-
ested in the general trends of this cutoff number.

The results clearly demonstrate that the size pa-
rameter of the cluster is key to determining the ac-
curacy of orientation averaging. The cutoff number
increases linearly with the scale of the compound
scatterer, at a given wavelength, with the slope
varying slightly from one method to another. An
inverse dependence on wavelength is also apparent,
although the variation of the material’s dielectric
function with wavelength introduces further depen-
dencies, as observed in the peak appearing around
520 nm, associated with a plasmon resonance (see
also ESI Fig. S4 for a comparison with a Drude
metal). The inter-particle coupling strength gen-
erally depends on material properties as well as
the geometry, and this in turn affects the relative
strength of different multipolar orders to describe
the scattering of the whole cluster.

We performed a spherical harmonic (SH) decom-
position of the angular pattern of f(ϕ, θ), f ∈{
σext, |E|2,C

}
for clusters of two different scales:

s = 0.1 and s = 1 (Fig. 5(d)). This decomposition
of the integrand into a series of spherical harmonics
performs a similar task as Fourier transforms for

one-dimensional signals, but on the surface of the
unit sphere. The SH decomposition expands the
function f(ϕ, θ) as

f(ϕ, θ) ≈
lmax∑
l=0

l∑
m=−l

almY
m
l (ϕ, θ), (10)

with Y ml the standard spherical harmonics of degree
l and angular momentum m. Higher-order spher-
ical harmonics are associated with more localised
angular features, which in turn require more angles
of incidence for numerical cubature. We used the
Matlab Chebfun library53,54 for this decomposition,
which implements internally an efficient algorithm
based on Fourier transforms. Note that we collapse
the coefficients into |al| :=

∑l
m=−l |alm|2, to sum-

marise the relative weight of a given order l, and
normalise the coefficients so that |a0| = 1 in each
case. The contrast between the two cluster scales
in Fig. 5(d) is very clear, and consistent across sev-
eral optical quantities of interest (far field extinc-
tion cross-section, σext, local field intensity E2, and
local degree of optical chirality C ). The magnitude
of the SH coefficients rapidly decays with order l,
but this decay is much faster for the smaller clus-
ter. We also note that E2 and C show a slower de-
cay than the far-field cross-section, suggesting that
near-field quantities are indeed more challenging to
integrate numerically. This is the focus of our next
example, with a more complex structure.

4. Helix

The previous examples considered compact clus-
ters, with just two particles. With more parti-
cles, the optical response can become even richer,
as the resonances of individual particles hybridise
and form collective modes. These larger clusters
typically require higher multipolar orders to de-
scribe the overall response of the cluster to inci-
dent light about a single origin, resulting in a more
intricate angular pattern and a more challenging
orientation averaging via numerical cubature. We
illustrate such a situation by considering a helical
strand of gold nanorods previously studied24, simi-
lar in size to some recently-proposed self-assembled
structures55.

The structure consists of 5 gold spheroids im-
mersed in water (Fig. 6) and we compute both far-
field and near-field quantities, to contrast their ori-
entation dependence. Specifically, we calculate four
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the last two spheroids. The data for each panel are nor-
malised to their maximum value (brown, with white set to 0
and green corresponding to negative values), as we are inter-
ested in comparing the angular patterns rather than specific
numeric values (which also have different units). These sim-
ulations used lmax = 15.
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Figure 7: Orientation averaging of light scattering by the
helical structure of Fig. 6. (a) Convergence of the relative
error for far-field cross-sections (extinction σext, blue, and
corresponding circular dichroism σcd, red). (b) Convergence
of the relative error in near-field quantities at location P
(local field intensity |E|2, purple, and local degree of chirality
C , green). The results are shown for the average over both
L and R incident polarisations. (c) and (d) Convergence
of the relative error in the same quantities, with respect to
lmax. The quantities are here calculated only via analytical
orientation averaging.

quantities of interest: the far-field extinction cross-
section σext, the corresponding circular dichroism
σcd, the near-field local intensity |E|2 at a posi-
tion P mid-way between the last two particles, and
the local degree of optical chirality C at the same
position. Full spectra are shown in ESI Fig. S4,
and in the following we focus on the wavelength
λ = 650nm. The angular dependence of each quan-
tity over the full solid angle is presented in Fig-
ure 6, where the colour maps are scaled to a max-
imum value of 1 for ease of comparison. The pat-
terns are non-trivial, as the structure is relatively
extended, and sharp angular features are present.
They differ between far-field and near-field, with
the local field intensity presenting a single maxi-
mum around (ϕ = π, θ = π/2) for this particular
position P , while the far-field patterns have several
maxima of equal strength. The chiroptical proper-
ties show more complex patterns than their unpo-
larised equivalent, as they can take both positive
(brown) and negative values (green).

We now turn to the convergence behaviour of ori-
entation averaging for these four quantities of in-
terest (Fig. 7). For clarity we only present results
obtained with spherical t-design cubatures, which
showed excellent accuracy in the previous examples,
and provide finer steps between available cubatures
than Lebedev. The convergence of far-field prop-
erties reveals a marked difference between σext and
σcd, with a relative error typically a factor of 10
worse for circular dichroism. This increased diffi-
culty in computing chiroptical properties is not un-
expected, and follows from the more complex pat-
tern observed in Fig. 6. The near-field convergence
is displayed with a different scale in Fig. 7 (b), as
the range of convergence is noticeably poorer than
for far-field properties. This is also unsurprising,
as the near-field quantities present sharper angular
features in Fig. 6. The local degree of chirality is
also showing a worse convergence rate compared to
the local field intensity, confirming that chiroptical
properties are more challenging to integrate accu-
rately than unpolarised ones.

As noted previously for the dimer structure, the
convergence of the results with respect to the num-
ber of incidence angles is largely independent of
the multipole truncation parameter lmax used in
the simulations. This value however dictates the
net accuracy of the calculations, and we show in
Fig. 7(c,d) the convergence with respect to lmax.
Here the exact result, corresponding formally to
lmax = ∞, is not known, and we use lmax = 40
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as reference instead. Similar conclusions can be
drawn, with near-field quantities converging much
slower than far-field cross-sections, and chiropti-
cal properties being more challenging to calculate
than unpolarised ones in both near-field and far-
field settings. These conclusions are expected to
hold beyond this particular set of examples, except
for particular cases such as near-field points of high-
symmetry.

5. Discussion and conclusions

Among the important decisions to consider when
simulating optical properties of nanoparticles or
nanoparticle clusters is the choice of the incident
light, often taken as a plane wave, notably its state
of polarisation and direction of propagation. The
optical properties can differ dramatically along dif-
ferent directions, and in the context of chiroptical
properties, may change the response entirely with
the onset of so-called extrinsic chirality56. Many
popular numerical methods such as FDTD, FEM,
or DDA, require a complete new calculation for
each direction of incidence, with a substantial cost
in simulation time. Although modern solvers of
Maxwell’s equations are getting increasingly per-
formant, and the computational hardware allows
large-scale problems to be treated on standard desk-
top computers, the computational cost is by no
means negligible and remains a hindrance for large-
scale optimisation problems. Indeed, a cluster of
just a few particles already exposes many degrees
of freedom, particularly for nonspherical particles,
or if their geometry itself can be modified57. Ad-
ditionally, the quantities of interest often involve
further averaging, such as enhancement factors av-
eraged over a specific volume or surface area where
analytes may be present33, or the integration over
a given spectral range58. Real-world particles are
typically polydisperse, requiring further averaging
over the size and shape distribution to compare
quantitatively with experiments. With each new
variable of integration the problem becomes less
tractable with off-the-shelf computers, thereby lim-
iting the number of studies and the full exploration
of such rich parameter spaces. In this context,
orientation averaging is an easy question to ad-
dress: for randomly-oriented scatterers, one typ-
ically wishes to obtain a reliable estimate of the
orientation-averaged quantity of interest, and often
a relative accuracy of 10−3 will be sufficient, taking
into account the often larger sources of uncertainty

in nanoscale dimensions, morphology, or even in
the material composition and dielectric function59.
With this objective in mind, one hopes to find rules
of thumb to decide a priori on a reasonable num-
ber of incidence directions to simulate, as well as
a means to evaluate the magnitude of the error in
this averaging process. The situation is however
complicated by the fact that different quantities of
interest have different convergence behaviour, and
few studies have been devoted to the performance
of different cubature rules in light scattering simu-
lations.

Our results offer some progress toward these
goals, with three notable contributions: first, we
benchmark seven different spherical cubature meth-
ods, considering both far-field and near-field quan-
tities of interest; second, we also contrast the stan-
dard unpolarised quantities such as cross-sections
and field enhancement, with chiroptical properties
including circular dichroism and local degree of op-
tical chirality, shown to display a more challenging
angular dependence; third, we connect the conver-
gence of cubature rules to the spherical harmonic
decomposition of the integrand.

While no universal rule stands out to offer an a
priori estimate of the number of incidence directions
needed for a given nanostructure, we have identi-
fied some helpful indicators. First and foremost,
the particle cluster’s size parameter, i.e. the ra-
dius of its circumscribed sphere times the wavenum-
ber in the incident medium, dictates the variabil-
ity of the angular pattern, and consequently, the
degree of spherical cubature required for an ac-
curate integration. This necessitates using one
of the best-performing spherical cubature meth-
ods, namely Lebedev, spherical t-design, or Gauß-
Legendre rules. These methods integrate exactly
spherical harmonics up to a given order, and we
confirmed their superior properties over ‘generic’
methods such as regular grids, quasi Monte Carlo,
or Fibonacci, which nonetheless remain popular
choices. Inter-particle coupling depends on many
factors, from the exact geometry of the particle
cluster, but also the resonances supported by each
particle. As a result, the wavelength dependence of
the convergence properties depend to an extent on
the material properties, not just on the wavenum-
ber.

We also observed a general trend when compar-
ing unpolarised quantities of interest with chirop-
tical properties, in both the far-field and in the
near-field. Chiroptical properties are found more
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sensitive to the direction of incidence, with more
complex angular patterns and a need for higher-
order cubatures to reach a given relative accu-
racy. Similarly, we contrasted near-field and far-
field quantities of interest, where, as expected from
empirical knowledge, we find that the convergence
of near-field quantities is more computationally-
demanding. Near-field properties typically re-
quire taking into account multipolar components
or higher order, compared to far-field properties.
Remarkably, however, we find that the convergence
rate of far-field or near-field quantities is largely in-
dependent of the multipolar truncation cutoff used
in the T -matrix simulation: although the actual
accuracy of the results is affected, the relative ac-
curacy of numerical cubature against analytical for-
mulas shows a consistent convergence with respect
to the number of cubature angles. This unexpected
observation suggests that the analytical formulas
for orientation-averaged properties provide robust
estimates even at relatively low multipole order,
even though their original derivation considers the
results only strictly valid in the limit lmax →∞. A
practical benefit of this observation is that one may
carry out a cubature convergence study at relatively
low lmax to decide on the number of incidence di-
rections (with the analytical benchmark using the
same lmax value), and this cubature can then be
applied to the final – more time-consuming – cal-
culation at higher lmax.

The near-field and far-field quantities we have
presented in this manuscript are by no means ex-
haustive. A particularly important extension of
this work would be to consider orientation averag-
ing of the scattering matrix, which captures other
important far-field properties11. As an example,
Mishchenko and coworkers60 analysed the scatter-
ing matrix elements for a random collection of
spheres, highlighting the importance of orientation
averaging to characterise coherent backscattering
and polarisation opposition, a distinctive feature of
multiple scattering that is hidden in speckle at fixed
orientation.

We note that the spherical cubature methods em-
ployed in this work are in some way suboptimal,
compared to adaptive cubature which can subdi-
vide the unit sphere recursively until the relative
accuracy in each subsection is below a minimum
threshold. Such strategies are potentially very ad-
vantageous, as they adapt to each particular inte-
grand, refining the sampling of incidence angles in
the regions of stronger variation. In contrast, the

cubature methods used in this work have predeter-
mined nodes and weights, regardless of the inte-
grand’s angular profile. The advantage is expected
to be highest for sharply-defined angular properties,
as exhibited by large elongated nanostructures sup-
porting collective modes with well-defined momen-
tum40. We tested briefly some adaptive cubature
methods61,62, and did not observe a better perfor-
mance on the above examples compared to Lev-
edev, spherical t-design, or Gauß-Legendre cuba-
tures. This is however a promising extension of this
work. Similarly, it would be interesting to consider
nested cubature rules, similar to Gauß-Kronrod for
1D quadrature, which would provide an error esti-
mate together with the integral63.
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