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Abstract

We introduce terms, an open-source Fortran program to simulate near-field and far-field optical properties
of clusters of particles. The program solves rigorously the Maxwell equations via the superposition T -matrix
method, where incident and scattered fields are decomposed into series of vector spherical waves.

terms implements several algorithms to solve the coupled system of multiple scattering equations that
describes the electromagnetic interaction between neighbouring scatterers. From this formal solution, the
program can compute a number of physically-relevant optical properties, such as far-field cross-sections for
extinction, absorption, scattering and their corresponding circular dichroism, as well as local field intensities
and degree of optical chirality. By describing the incident and scattered fields in a basis of spherical waves
the T -matrix framework lends itself to analytical formulas for orientation-averaged quantities, corresponding
to systems of particles in random orientation; terms offers such computations for both far-field and near-
field quantities of interest. This user guide introduces the program, summarises the relevant theory, and is
supplemented by a comprehensive suite of stand-alone examples in the website accompanying the code.
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1. Introduction

terms – acronym for T -matrix for Electromag-
netic Radiation with Multiple Scatterers – is a suite
of Fortran 90 routines to simulate light scatter-
ing by rigid clusters of particles immersed in a ho-
mogeneous, non-absorbing medium. The calcula-
tion is based on the superposition T -matrix (STM)
method, an extension of Waterman’s T -matrix for-
malism1–4 to multiple scatterers5–7. The incident
and scattered fields are expanded into series of vec-
tor spherical wave functions (VSWFs), which can
be interpreted as a multipolar decomposition. For
linear media, the coefficients describing the scat-
tered field follow a linear relationship with those
of the known incident field; this linear relation-
ship is expressed through the so-called T -matrix,
which encodes the full information about a scat-
terer’s linear optical properties and its response to
an arbitrary incident excitation. Where several par-
ticles are present, light scattered by one particle
can contribute to the excitation of the others; the
self-consistent set of exciting and scattered fields
from each particle, and the cluster as a whole, is ex-
pressed in the STM framework as a linear system of
equations involving the single particle T -matrices,
and translation matrices to transform the VSWFs
from one particle to another. The solution of this
system of equations enables the calculation of near-
field quantities as well as far-field cross-sections, for
specific directions of incidence and polarisation, or
after analytical orientation-averaging.

In principle many types of particle shapes can
be used in terms, provided an external pro-
gram can calculate and export their correspond-
ing T -matrix. terms provides built-in calcu-
lations of single-particle T -matrices for homoge-
neous and multi-layered spheres, and our Matlab
code smarties can export accurate T -matrices for
oblate and prolate spheroidal particles in a com-
patible format8. The maximum number of par-
ticles that terms can consider is typically about
a few hundred for standard computers and small
maximum multipolar order, although larger sys-
tems could be modelled using an iterative linear
solver9–11 or implementing a hierarchical fast mul-
tipole method11,12.

This guide aims to describe the program from
a user’s perspective, illustrate the types of calcula-
tions that it can perform, and highlight its strengths
relative to other computational methods. The code
is released as open-source, and we welcome con-

tributions from the community. A dedicated web-
site13 provides stand-alone examples to illustrate
the program’s capabilities in specific applications.

1.1. General features
From a generic description of the scattering prob-

lem, consisting in the position and orientation of N
particles, dielectric functions or input T -matrix for
each particle, and the incident wavelength(s), the
program can perform three main types of simula-
tions:
1. Near-field mode, to map local fields and de-

rived quantities at fixed incidence, or with
orientation-averaging.

2. Far-field mode, to calculate cross-sections (ex-
tinction, scattering, and absorption, as well as
corresponding linear and circular dichroism) at
fixed incidence and with orientation-averaging.

3. Polarimetry mode, to calculate Mueller matri-
ces, Stokes parameters, and differential scatter-
ing cross-sections at specified scattering angles.

At runtime, the program sets up a linear system of
equations in the form Ax = b, where the matrix A
is constructed from a given set of single-particle T -
matrices, particle coordinates and orientations, and
the vector (or matrix) b characterises the specified
incident plane wave excitation(s). The unknown
x determines the self-consistent field exciting each
scatterer, as described in more details in Sec. 3.
The linear system is then solved using one of several
schemes selected by the user:

0. Application of a (direct) solver to determine
x, corresponding to the particle-centred scat-
tering coefficients for one or more specific inci-
dent field(s), b.

1. Direct inversion of the matrix A to determine
the particle-centred T -matrices for the cluster
of particles.14

2. Stout et al.’s 14,15 iterative scheme for calcu-
lating the particle-centred T -matrices.

3. Mackowski & Mishchenko’s 7,9,16–18 scheme for
calculating the particle-centred T -matrices.

Implementation of these multiple solution schemes
in a modular code-base is a core feature in terms;
we hope it will prove useful for designing, testing,
and benchmarking various methods, and perhaps
lead to the implementation of new improved algo-
rithms.

The most notable features of terms include:
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• Export of the collective T -matrix describing
the entire cluster of particles.

• Import of general T -matrices, which can be
pre-generated using terms or another pro-
gram, such as smarties (for spheroids)8.

• Built-in calculation of individual T -matrices
for stratified/coated spheres described by Mie
theory19.

• Calculation of partial absorption cross-sections
in each layer of coated spheres, following Mack-
owski20.

• Calculation of orientation-averaged far-field
cross-sections and associated circular dichro-
ism21.

• Calculation of orientation-averaged near-
fields15 and optical chirality22.

• Calculation of the Mueller matrix and Stokes
parameters for specific incidence and scattering
angles4.

• Possible compilation with all double-precision
variables promoted to quad-precision23.

• Export the output results in plain text or
"HDF5" file format24.

1.2. Relation to other codes
terms belongs to the family of codes implement-

ing the superposition T -matrix method for collec-
tions of scatterers. Other implementations have
been described in the literature7,14,15,21,25–29 (for
a comprehensive review, we refer the reader to Ref.
30); available open-source programs include that
of Mishchenko & Mackowski for spherical particles
and optically-active media (mstm)18, and for non-
spherical particles the recent additions of FastMM
by Markkanen and Yuffa11 and qpms by Nečada
and Törmä31.

Among the many available techniques to solve
light scattering problems32, the STM method
holds distinct advantages over purely numerical
techniques such as the Finite Elements Method
(FEM)33, the Discrete Dipole Approximation
(DDA)34, or the Finite Differences Time Domain
(FDTD) method35. Unlike STM, these techniques
require discretising the whole cluster geometry and
solving the full electromagnetic problem for every
direction of incidence. Other notable advantages
include:

• Orientation-averaged far-field properties can
be obtained at very little computational cost,
with analytical formulae21,36–39. Orientation-
averaged near-field quantities can also be com-
puted15,22, albeit with some computational
overhead, providing analytical benchmark re-
sults40.

• For clusters of several identical particles only
one T -matrix needs to be calculated.

• Within its domain of validity the Extended
Boundary Condition Method (EBCM), and
the T -matrix framework more broadly, is typi-
cally faster and more accurate than competing
methods, and is therefore often used for bench-
mark calculations4.

• The multipolar decomposition of electromag-
netic fields can provide physical insight into
complex optical responses41.

It should be noted that the STM method is not
without its limitations,

• Closely-spaced scatterers can lead to inaccu-
rate results, or require very large multipolar
orders, and the exact domain of applicability
of the method in such situations is not fully-
understood23. Some proposals to overcome
this issue have recently been demonstrated42,
and may be implemented in terms in the fu-
ture.

• The calculation of local fields in the vicinity
of elongated nanoparticles is limited by the
Rayleigh Hypothesis43.

• Our particular implementation is limited to
relatively small numbers of particles (a few tens
to hundreds, on a typical workstation, and de-
pending on their size parameter).

• Numerical instabilities arise at high maximum
multipolar order (from approximately nmax ≈
30 typically), preventing the calculation of ac-
curate T -matrix elements in double-precision,
and leading to ill-conditioning of matrices.

• Nonspherical particle shapes require first com-
puting the T -matrix with an external pro-
gram. terms has built-in functions for ho-
mogeneous and multi-layered spheres, and for
non-spherical particles the T -matrix can be
obtained from a variety of methods, from
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Mishchenko’s EBCM implementation for ax-
isymmetric particles4 and smarties8 in par-
ticular for spheroids, the surface-integral equa-
tion (SIE) method44, the volume-integral
equation method11, and other algorithms have
been proposed for the Discrete Dipole Approxi-
mation45, or general solvers such as the Finite-
Element Method29.

Different superposition T -matrix algorithms have
been proposed, with their own strengths and weak-
nesses depending on the type of particles and their
configuration; an important feature of terms is
that it is possible to compare several algorithms
and choose the most suitable for a given prob-
lem. For complex geometries, especially compact
ones, the invariant-embedding T -matrix method46,
the Surface Integral Equation47 or Volume Integral
Equation methods44 may provide better alterna-
tives. Our implementation also does not currently
consider periodic arrays of scatterers29,31,48, or the
presence of a substrate49,50.

1.3. Aims of this manual
terms is accompanied by a comprehensive set of

examples available online13; this user guide aims to
provide a useful complement introducing i) the nec-
essary background information about the method;
ii) the initial steps required to install and run the
program; iii) a high-level description of the program
and its capabilities.

1.4. Licensing
terms is made available under the Mozilla Pub-

lic License Version 2.0, but note that parts of the
code include external Fortran libraries under differ-
ent licencing, such as lapack (BSD), and HDF5
routines (copyright The HDF Group)24.

1.5. Disclaimer and request for feedback
The terms program is provided "as is", with-

out warranty of any kind. While we have tested
the program in a large number of configurations we
cannot provide any guarantee as to the accuracy or
validity of simulation results obtained with the pro-
gram. The user is strongly encouraged to perform
their own reference checks against other methods,
but also internal consistency checks by switching
the solution method, increasing the multipolar or-
der, and if necessary using quad precision.

We welcome comments, reports of errors, and
suggestions of new features, which can be addressed

directly to the authors or via the code’s hosting
website.

2. Getting started

Figure 1 displays a partial overview of terms’
capabilities, with calculation results taken from the
online documentation13, which includes over 20
self-contained examples illustrating all the different
options for using terms. We do not repeat these
examples in this user guide but instead provide the
basic common starting point which can be adapted
for any specific use case.

2.1. Installation
The code was developed and tested predomi-

nantly on standard personal desktop and laptop
computers running Linux (Ubuntu 18.04 LTS) and
MacOS, as well as the Rāpoi HPC Cluster at Vic-
toria University of Wellington. We’ve also suc-
cessfully installed and run terms on Windows via
the Windows Subsystem for Linux (WSL2). Our
Linux configuration includes: the gfortran com-
piler in gcc version 7.4.0, HDF5 software with li-
braries "libhdf5-dev", blas "libblas-dev" and
lapack "liblapack-dev". We advise using a fairly
recent Fortran 90 compiler (gcc versions below 6
have caused problems), and recent HDF5 release
"HDF5-1.12.1"24.

There are two ways for producing the executable
file:

• (Recommended) using Cmake, with parameters
defined in CMakeLists.txt:

> cd build
> cmake ..
> make

will produce an executable terms for your ma-
chine, which you can leave in its location or
move elsewhere.

Alternatively,

• A basic script is provided under
build/buildTERMS.sh to specify the compila-
tion options (double vs quad precision, debug
mode, and use of a system’s lapack).

> cd build
> bash buildTERMS.sh

4



(a)

(c) (e)(d)

T11

T21

T12

T22

av
er

ag
e,

  
nm

2
ci

rc
. d

ic
hr

oi
sm

,  
nm

2

400 500 600 700 800 900

0

10000

20000

30000

40000

-10000

-5000

0

5000

wavelength /nm

Absorption
Extinction
Scattering

0

45

90

135

180

200 400 600 800 1000
wavelength /nm

sc
at

te
rin

g 
an

gl
e 

/d
eg

-1.0
-0.5
0.0
0.5
1.0

Deg. of CP

-60 -30 0 30 60

-60

-30

0

30

60

x /nm

y 
/n

m

0
1
2
3
4

log( E2)

(b)

Figure 1: Illustrative overview of terms. (a) Pictorial representations of nanoparticle clusters studied with terms (Left to
right: closely-spaced dimer23, trimer of Au@Pd core-shell antennas51, chiral dimer and helix of Au spheroids40 (also bottom
helix), hybrid antenna-satellite photocatalyst52). (b) Collective T -matrix of a chiral dimer of prolate spheroids (after online
example 1313; the colour maps the modulus of the T -matrix elements, here truncated at nmax = 3). (c) Far-field spectra of
orientation-averaged cross-sections (absorption, scattering, extinction, and their corresponding circular dichroism in the bottom
panel); the structure consists of a chiral dimer of prolate Au spheroids in water40. (d) Near-field map of =(ε)|E|2 in a trimer
of Au@Pd core-shell antennas51. (e) Dispersion map of the degree of circular polarisation displayed by a helix of five prolate
Au spheroids (after online example 0813).

will produce an executable terms for your ma-
chine, which you can leave in its location or
elsewhere.

The executable reads user-defined instructions
describing the scattering problem from an input file,
and is called as follows:

> ./terms inputfile > messages.log

The results of calculations are stored in specific
output files in the current directory and displayed
in the terminal together with any errors and warn-
ings (it can be convenient to redirect the standard
output to a log file, as in the example above).

2.2. Initial steps
The main input parameters are read from a plain

text input file (line by line and from left to right;

blank lines are ignored). Each line is interpreted
as a sentence and split into space-separated words.
The first (left-most) word is interpreted as a case-
sensitive keyword, and the subsequent words as ar-
guments for that keyword. In each sentence, text
from the first word starting with the hash charac-
ter (#) is interpreted as a human-readable com-
ment and thus ignored by the program. All the
supported keywords and corresponding arguments
are documented in Appendix A.1. The order of
keywords generally doesn’t matter, with just two
exceptions: ModeAndScheme must be the first key-
word, and Scatterers must be the last.

2.3. Minimal example
We first illustrate the use of terms on a sim-

ple case, the calculation of far-field spectra for ab-
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sorption, scattering, and extinction with a structure
consisting of four gold spheres immersed in water.
Most simulation parameters are kept to their de-
fault values.

This simulation uses the following input file,

ModeAndScheme 2 3
Wavelength 300 900 300
Medium 1.7689 # epsilon of water

Scatterers 4
Au 31.5 0 -50 30
Au -31.5 0 -50 30
Au 22.2738 22.2738 50 30
Au -22.2738 -22.2738 50 30

The program is run with the command
./terms input > log, where the log file contains
information about the simulation (how detailed de-
pends on the optional Verbosity argument). The
output for this simulation consists of a number of
plain text files, storing the far-field cross-sections:

• Files cs(Abs|Ext|Sca)OA contain orientation-
averaged cross-sections.

• Files cd(Abs|Ext|Sca)OA contain orientation-
averaged optical activity.

• Files cs(Abs|Ext|Sca)(1X|2Y|3R|4L) con-
tain fixed-orientation cross-sections for the re-
spective polarisation (’X’, ’Y’: 2 orthogonal lin-
ear polarisations; ’R’, ’L’: right and left circular
polarisations).

• Files csAbs(1X|..)_scat(00i)coat(j) con-
tain partial absorption cross-sections inside
multi-layered spheres.

This plain text output can become inconvenient
when running many simulations; terms provides
an option to produce a single Hierarchical Data For-
mat (HDF5) output file24, with the output quanti-
ties stored under individual fields instead of sepa-
rate files. The HDF5 file format can be read in many
other programs, using e.g the built-in h5read func-
tion in Matlab, or packages rhdf5 for R, h5py for
Python, HDF5.jl for Julia, to list only a few popu-
lar options.

The documentation’s website features many min-
imal examples of use for each option of the program,
and with various cluster configurations.

2.4. Range of validity
The T -matrix method is often used as a bench-

mark for other numerical techniques such as DDA
or FEM, as it provides very accurate results. A
sufficiently-high value of the maximum multipole
order, nmax, should be chosen for each simulation,
and convergence of the results with increasing nmax
is often a good indicator of the accuracy of the re-
sults. terms performs internal checks of conver-
gence for the far-field cross-sections, by comparing
the relative error between successive partial sums
over multipole orders 1 to nmax. We strongly ad-
vise users to monitor the messages and check for
issues with convergence. It is also useful to re-run
calculations with a higher value of nmax and check
that the results do not differ. In near-field calcula-
tions a higher nmax value is generally needed, and
we find that values above 30 can require switching
to quad precision. The challenging case of non-
spherical particles with strongly-overlapping cir-
cumscribed spheres pushed some calculations to use
nmax above 50; even with quad precision arithmetic
the accuracy eventually deteriorates (above 60, typ-
ically). We emphasise that these are extreme cases;
in many standard situations a low value of nmax
is sufficient (8 is the default value). The coupled-
dipole method, widely used in nano-optics, corre-
sponds roughly to setting nmax = 1.

Single-particle T -matrices computed with Mie
theory are generally accurate up to nmax = 60. Fol-
lowing Wiscombe’s criterion, this corresponds to a
size parameter of 45, or a sphere radius of 2 mi-
crons in vacuum for visible light. For spheroids,
smarties enables accurate calculation of T -matrix
elements with an aspect ratio of up to 100, and
similar size limitations as Mie theory8.

Multiple-scattering generally introduces a loss
of precision compared to single-particle calcula-
tions, and requires larger values of nmax. The
user is advised to consider the different solution
schemes implemented in terms, as they can offer
substantial benefits in specific situations. For in-
stance, Stout and co-workers introduced a balanc-
ing scheme15 that stabilises the numerical calcu-
lations and proves very effective for closely-spaced
resonant particles. terms has extended this im-
provement to other schemes by default (controlled
with the keyword StoutBalancing). A dramatic
difference between Scheme 2 and 3 is observed when
particles are widely-separated: our implementation
of Mackowski & Mishchenko’s scheme fails where
separations are above a few hundred nanometres
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even at large nmax, while Stout’s scheme maintains
good accuracy without requiring a nmax value much
larger than dictated by the single-particle response.
The key difference between the two schemes is that
Mackowski & Mishchenko’s translates all VSWFs to
a common origin, while Stout’s maintains particle-
centred expansions throughout14–18,53.

The performance of Mackowski & Mishchenko’s
scheme is usually very good, in both accuracy and
speed, and is chosen as the default.

The results of terms calculations have been val-
idated against Mackowski & Mishchenko’s mstm
code for collections of spheres18, and against a
commercial Finite Element package (Comsol54) for
dimers of spheroids23.

3. Underlying principles of the code

In the following presentation, the complex elec-
tric field is denoted by E(r, t), where r is a point
coordinate and t is time; we assume harmonic time
dependence at angular frequency ω, so that e−iωt
factors out and is omitted from the rest of the dis-
cussion.

3.1. Vector spherical wave functions
We define the vector spherical wave functions

(VSWFs) as,

M(ζ)
nm(kr) =

1√
n(n+ 1)

∇× (ψ(ζ)
nm(kr)r), (1)

N(ζ)
nm(kr) =

1

k
∇×M(ζ)

nm(kr). (2)

with k the wavenumber and

ψ(ζ)
nm(kr) = z(ζ)n (kr)Ynm(θ, ϕ), (3)

where z(ζ)n are spherical Bessel functions. For our
purposes we only require ζ = 1 (z(1)n = jn, spher-
ical Bessel functions of the first kind) and ζ = 3

(z(3)n = hn, spherical Hankel functions of the first
kind), referred to as regular and the irregular func-
tions, respectively, which are linearly independent.
Henceforth, for brevity and notational convenience
we refer to ψ(3)

nm as simply ψnm, and ψ(1)
nm as ψ̃nm.

Furthermore, the tilde will also be placed over the
coefficients (e.g. ã) to explicitly indicate a regular
basis set.

The spherical harmonics Ynm for |m| ≤ n we
write as,

Ynm(θ, ϕ) = γnm
√
n(n+ 1)Pmn (cos θ)eimϕ, (4)

where the associated Legendre functions Pmn (cos θ)
are defined using the Condon-Shortley phase and

γnm :=

√
(2n+ 1)

4πn(n+ 1)

(n−m)!

(n+m)!
. (5)

This convention is consistent1 with our main refer-
ences.4,14,19,55

Formally, n can run from 0 up to ∞, though nu-
merically all series of VSWFs are truncated to some
maximum multipole order nmax. We also introduce
the composite index p(n,m) for convenience, de-
fined as

p := n(n+ 1) +m (6)

with,

n =Int(
√
p) (7)

m =p− n(n+ 1). (8)

A general regular solution to the Helmholtz equa-
tion can be expressed in the VSWF basis as,

Ẽ(kr) =

nmax∑
n=1

n∑
m=−n

[ã1,nmM̃nm(kr) + ã2,nmÑnm(kr)]

=

2∑
s=1

pmax∑
p=1

ãs,pw̃s,p(kr)

=

lmax∑
l=1

w̃l(kr)ãl =: W̃(kr)ã, (9)

where ã ∈ Clmax is a column vector of coefficients,
W̃ = [w̃1, w̃2, . . . , w̃lmax ] is a basis-set pseudo-
matrix of dimension 3 × lmax, i.e. a row vector
composed of column vectors

w̃l(s,n,m) :=

{
M̃nm for s = 1

Ñnm for s = 2
(10)

and lmax is the maximal value of another composite
index l, introduced for convenience

l := (s− 1)nmax(nmax + 2) (11)
+ n(n+ 1) +m

= (s− 1)pmax + p

≤ lmax

lmax = 2nmax(nmax + 2) = 2pmax, (12)

1However, note that Mishchenko et al.4 define their
ψ
(ζ)
nm(kr) as z(ζ)n (kr)Pmn (cos θ)eimϕ, which must be multi-

plied by γnm
√
n(n+ 1) to match our ψ(ζ)

nm(kr) in (3).
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Figure 2: Pictorial representation of a T -matrix and rele-
vant indices for nmax = 2. The matrix elements coupling
Mnm with Mn′m′ (magnetic–magnetic) are in blue, Nnm

with Nn′m′ (electric–electric) in red, the off-diagonal blocks
coupling Mnm with Nn′m′ (magnetic–electric) and Mn′m′

with Nnm (electric–magnetic) are in orange and green, re-
spectively. The elements coupling VSWFs of the same mul-
tipole order (n = n′) are of darker shade.

where s ∈ {1, 2} is sometimes referred to as the
parity or mode index, corresponding to either M or
N functions.

The irregular variant of (9) is obtained by sim-
ply removing the overhead tildes (e.g. W̃ → W),
which corresponds to switching the radial depen-
dence from jn(kr) to hn(kr) throughout.

3.2. The T-matrix ansatz
Outside a given scatterer, the total field

Etot(kr) = Ẽinc(kr) +Esca(kr) is partitioned into a
known incident contribution Ẽinc(kr) and unknown
scattered contribution Esca(kr). Both contribu-
tions are expanded in terms of VSWFs up to some
multipole order nmax,

Ẽinc(kr) = EW̃(kr)ã, (13)
Esca(kr) = EW(kr)a, (14)

where E corresponds to the incident field’s ampli-
tude (usually taken as unity, E = |Ẽinc| = 1), and
ã ∈ Clmax , a ∈ Clmax are the incident and scattered
coefficients, respectively. The association of Ẽinc

with regular (or incoming) and Esca with irregular
(or outgoing) VSWFs is a choice motivated by phys-
ical reasoning: (i) Ẽinc(kr) ought to be well defined
everywhere within a finite distance from the origin,
which rules out irregular VSWFs due to their sin-
gular behaviour at r = 0; and (ii) Esca(kr) ought
to satisfy the outgoing Sommerfeld radiation condi-
tion, requiring that |Esca(r)| → 0 as 1/r as |r| → ∞,
which rules out regular VSWFs due to their diver-
gence in the far field. Given the linearity of the
governing Maxwell equations in linear media, the
T -matrix method expresses the linear dependence
between ã and a,

a = T ã, or al =
∑
l′

Tll′ ãl′ , (15)

where T is the so-called "transition" or "trans-
fer"4,14 matrix (T -matrix for short), which depends
on the scatterer’s characteristics at a given wave-
length but is independent of illumination, encoded
in ã. For a spherically symmetric scatterer centred
at the origin, T is a diagonal matrix with the diag-
onal elements determined analytically by Mie the-
ory. For other particle shapes, terms requires that
the T -matrix be provided as input, with a format
specified in App. A.1 (keyword TmatrixFiles).
Note that the T -matrix may also represent the re-
sponse of a composite scatterer comprising multi-
ple particles; terms can in fact calculate such a
collective T -matrix from individual one-body T -
matrices,14,15 and re-use it as input to simulate the
scattering properties of a superstructure of such el-
ements29.

3.3. Transformation under rotation/translation of
coordinates

The STM method requires transforming the se-
ries expansions of the fields from one origin to an-
other, such as from the centre of one particle to a
neighbour’s, or to a common origin referred to as
the global frame’s. Typically the T -matrix of a non-
spherical particle will have been calculated in a con-
venient orientation, e.g. for axisymmetric particles
with symmetry axis along z, requiring rotations in
changing reference frame as illustrated in Fig. 3.3.
In the following we summarise useful relations for
the translation and rotation of VSWFs. We take
the notational convention that expressions in local
coordinate frames are specified with a superscript
in brackets.

8
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Figure 3: Illustration of local and global reference frames for
a cluster of particles and their associated T -matrices.

3.3.1. Rotation
Let r(1) = (r, θ(1), ϕ(1)) and r(2) = (r, θ(2), ϕ(2))

be the spherical polar coordinates of the same point
P in coordinate systems 1 and 2, respectively, shar-
ing the same origin O. If coordinate system 2 is
obtained by rotating coordinate system 1 through
Euler angles (α, β, γ), here defined in the "zyz"
convention4 with 0 ≤ α < 2π, 0 ≤ β ≤ π, and
0 ≤ γ < 2π, then

ψ(2)
nm(kr(2)) =

n∑
µ=−n

ψ(1)
nµ (kr(1))Dn

µm(α, β, γ),

ψ(1)
nm(kr(1)) =

n∑
µ=−n

ψ(2)
nµ (kr(2))Dn

µm(−γ,−β,−α),

(16)

where Dn
µm = e−iµαdnµm(β)e−imγ and dnµm are the

Wigner D- and d-functions.4 Conveniently, ψ̃nm,
M̃nm, Ñnm, Mnm and Nnm transform in exactly
the same manner under rotation, so substituting
ψnm by a desired basis function in (16) will give the
appropriate expression (see equations (5.23)–(5.24)
of Ref. 4 for details). In our notation, W(2)(kr(2))
in coordinate system 2 is related to W(1)(kr(1)) in
coordinate system 1 via

W(2) = W(1)R(α, β, γ) (17)

where R(α, β, γ) is a unitary block-diagonal matrix
(of size lmax × lmax), satisfying

R−1(α, β, γ) = R†(α, β, γ) = R(−γ,−β,−α)
(18)

with matrix elements given by

Rll′(α, β, γ) = δss′δnn′D
n
m′m(α, β, γ), (19)

where the index l(s, n,m) is defined in (11). Note
that (17) also applies to regular waves W̃. Now, if
a (regular or irregular) spherical wave expansion is
described by a vector of coefficients a(1) in coordi-
nate system 1 and by a(2) in coordinate system 2,
then

a(2) = R†(α, β, γ)a(1), (20)

which follows from equating the field expansions
and using (17), i.e.

W(1)a(1) = W(2)a(2) = W(1)R(α, β, γ)a(2)

=⇒ a(1) = R(α, β, γ)a(2). (21)

Let us re-label coordinate system 1 as G to indicate
a global, space-fixed reference frame, and coordi-
nate system 2 as L for local frame, attached to a
scatterer. A T -matrix T(L) expressed in the local
frame is transformed into T(G) = RT(L)R† in the
global frame, where R(α, β, γ) depends on the Eu-
ler angles (α, β, γ) that rotate frame G onto frame
L (as opposed to L onto G). To clarify, consider

a(L) = T(L)ã(L)

R†a(G) = T(L)R†ã(G)

a(G) = RT(L)R†︸ ︷︷ ︸
T(G)

ã(G) =⇒ T(G) = RT(L)R†.

If the scatterer is rotationally symmetric about the
local z-axis, which is tilted by spherical polar angles
(θ, ϕ) relative to the global z-axis, then α = ϕ,
β = θ, and the value of γ is irrelevant due to axial
symmetry, so we can choose γ = 0 to have T(G) =
R(ϕ, θ, 0)T(L)R(0,−θ,−ϕ) (see Sec. 5.2 of Ref. 4
for details).

3.3.2. Translation
Consider a point P with coordinates r(1) in co-

ordinate system 1 with the origin at O1. If we
choose another origin O2 displaced by d12 from O1,
then the coordinates of P relative to O2 will be
r(2) = r(1) − d12, as illustrated in Fig. 4. The
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translation-addition theorem for vector spherical
waves states that6,9, in the limit nmax →∞,

W(1)(kr(1)) =

{
W(2)(kr(2))Õ(kd12), if r(2) > d12,

W̃(2)(kr(2))O(kd12), if r(2) < d12,

(22)

W̃(1)(kr(1)) = W̃(2)(kr(2))Õ(kd12), (23)

where Õ(kd12) and O(kd12) are (lmax × lmax) ma-
trices of regular and irregular translation-addition
coefficients (TACs), respectively14. Note the con-
ditional statement for irregular waves: the transfor-
mation depends on the relative length of r(2) and
d12. In Fig. 4, an irregular basis centred at O1 is
mapped onto a regular basis centred at O2 via the
irregular TACs. However, if O2 were to the left of
the bisector, so that r(2) > d12, then the irregu-
lar basis centred at O1 would be mapped onto an
irregular basis centred at O2 via the regular TACs.

Note that O1 and O2 are themselves points with
coordinates r1 and r2, respectively, in a common
"global" frame with a fixed origin O. If we de-
note the global frame coordinates of P by r, then
r(1) = r− r1, r(2) = r− r2, and d12 = r(1) − r(2) =
r2 − r1 =: r21. Henceforth we follow Stout and
coworkers14,15 and adopt the shorthand notation
Õ(i,j) := Õ(krij) = Õ(kdji), and likewise for
O(i,j), yielding

W(i) =

{
W(j)Õ(j,i), if r(j) > rij ,

W̃(j)O(j,i), if r(j) < rij ,
(24)

W̃(i) = W̃(j)Õ(j,i). (25)

Note the reversal of indices in rij = dji and the
minus sign in rij = −dij ; note that dij = dji =
rij = rji ≥ 0 in our notations.

To express the translation-addition theorem in
terms of the coefficients (the a’s) of a VSWF expan-
sion, multiply (from the right) both sides of equa-
tions (24) and (25) by column vector a(i), where the
superscript (i) indicates where the VSWF expan-
sion is centred. From inspection of the right-hand
side we find that

a(j) = Õ(j,i)a(i), if r(j) > rij , (26)

ã(j) = O(j,i)a(i), if r(j) < rij , (27)

ã(j) = Õ(j,i)ã(i). (28)

Note that (26), (27) and (28) are in a similar
matrix-vector form to the rotation equation (20).

(a) (b)

Figure 4: (a) Illustration of how the coordinate vector of
point P is transformed from r(1) to r(2) when the origin is
switched from O1 to O2. Dashed red line bisects the O1P
edge of the O1PO2 triangle. (b) Illustration of how the sin-
gularity at Oi exhibited by W(kr(i)) is spread over the sur-
face of a ball with radius dij = rij after translation to a
target origin Oj by displacement vector dij . The irregu-
lar basis remains irregular outside the ball, i.e. W(kr(i)) =

W(kr(j))Õ(j,i) for r(j) > rij , but is transformed into a reg-
ular basis inside the ball, i.e. W(kr(i)) = W̃(kr(j))O(j,i)

for r(j) < rij .

3.3.3. Factorized translation (involving rotation)
A general translation from centre ri to another

centre rj by displacement vector dij = (dij , θij , ϕij)
can be separated into three steps:

1. Rotation of the local frame to align the z-axis
with the dij vector. In the zyz convention, the
appropriate Euler angles are α = ϕij , β = θij ,
and γ = 0.

2. Axial translation along the rotated local z-axis
by dij .

3. Rotation of the local frame to realign the z-axis
with the original orientation. The appropriate
Euler angles are α′ = −γ = 0, β′ = −β = −θij ,
and γ′ = −α = −ϕij .

This factorisation can be expressed in matrix form
as

O(j,i) = R(ϕij , θij , 0)Oz(dij)R(0,−θij ,−ϕij)
(29)

for the irregular case, where Oz(dij) represents the
matrix of z-axial translation coefficients, many of
which are zero due to the special case of axial trans-
lation along z. Note that the three aforementioned
steps correspond to stepwise movement of the local
axis, from the perspective of the initial point i, and
the transformation corresponds to reading the ma-
trix multiplication in (29) from left to right; but the
sequence of steps and the direction of movement is
actually reversed from the perspective of the scat-
terer at the destination point. More importantly,
since all three matrix-factors on the right-hand side

10



of (29) will contain many zeroes, operating on a vec-
tor of VSWF coefficients in a sequence of three steps
can actually reduce the scaling of the net computa-
tional cost from ∼ n4max to ∼ n3max, when the naïve
matrix multiplication on each step is replaced by a
custom operation that sums just over the relevant
(non-zero) components.

Another potential advantage of using (29) is that,
after obtaining the three factors for O(j,i), they
can be recycled when computing the reverse trans-
lation O(i,j) to reduce the overall computational
cost. First, beware that Oz(−dij) is not the in-
verse of Oz(dij), and note that Oz(dij) is invari-
ant to interchanging i and j (dij = dji ≥ 0). Ac-
tually, [Oz(dij)]

−1 = R(0, π, 0)Oz(dij)R(0,−π, 0),
where R(0, π, 0) is block-diagonal and each block
is anti -diagonal. Second, since ϕij = π + ϕji
and θij = π − θji, R(ϕji, θji, 0) can be cal-
culated from R(ϕij , θij , 0) using the symmetry
relation dnµm(π − θ) = (−1)n−mdn−µm(θ) (see
Eq. B.7 in Ref. 4), so that Dn

µm(ϕji, θji, 0) =
(−1)n−m+1Dn

−µm(ϕij , θij , 0), where the extra pref-
actor of −1 comes from multiplying by e−iπ = −1.

Computing O(i,j) in general is more costly than
the combined effort of computing Oz, R, and R−1.
However, in our experience, performing matrix mul-
tiplication of the three factors in the sequence from
the right (ROzR

−1) does not seem to yield the ex-
pected result (matrix O(i,j)), suggesting a numeri-
cal instability in this approach.

3.4. Superposition T-matrix for multiple scatterers

Incident plane wave
(known)

Inc. + scattered field
(unknown)

Figure 5: Pictorial representation of light scatttering by a
nanoparticle cluster. An incident plane wave with known
wavevector (kinc) and incident field (Einc) is scattered by a
cluster of N particles centred at r1, r2, . . . , rN . Each particle
scatters in response to the net incident field exciting it (par-
tial waves illustrated in dashed blue). The self-consistent
total field everywhere in space is the superposition of the
incident field (Einc), and of the collectively scattered field
(Esca). The scattered field is illustrated by distorted wave-
fronts outgoing from the cluster.

This section follows the treatments by
Stout et al.14,15 as well as similar discus-
sions for multi-sphere clusters by Mackowski
& Mishchenko7,9,16,17.

For a cluster of N scatterers (each of arbitrary
shape), the collectively scattered field Esca may be
formally separated into additive contributions from
the individuals, namely:

Esca(r; k) =

N∑
j=1

Esca,j(r; k)

= E

N∑
j=1

W(j)(kr(j))c
(j)
j (30)

where r(j) = r − rj , rj is the position of the jth
scatterer in the global frame. Note that each partial
field contribution Esca,j(r) in (30) is developed in
terms of irregular waves centred at rj , as indicated
in the superscript of r(j) and the corresponding co-
efficients c

(j)
j . The centre of expansion need not

necessarily be the centre of the particle associated
with Esca,j(r), so we still keep the subscript j in
c
(j)
j as a label specifying the particle centre, which

may seem redundant, but keep in mind that c(i)j is
well defined for i 6= j. It is also important to note
that (30) does not actually prescribe how exactly
the collectively scattered field is partitioned among
the individuals. The partitioning is to be deter-
mined self-consistently. To set up a self-consistent
system of linear equations, it is useful to define the
excitation field Ẽexc,j(r) for each scatterer j, and
then develop it in terms of regular VSWFs centred
at rj , i.e.

Ẽexc,j(r) := Ẽinc(r) +

N∑
l=1
l 6=j

Esca,l(r)

= EW̃(j)(kr(j))ã(j) + E

N∑
l=1
l 6=j

W(l)(kr(l))c
(l)
l

= EW̃(j)(krj)

ã(j) +

N∑
l=1
l 6=j

O(j,l)c
(l)
l︸ ︷︷ ︸

c̃
(j)
j←l


(31)

for r(j) < min ‖rj − rl‖ (32)

=: EW̃(j)(krj)ẽ
(j)
j (33)
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where ã(j) = Õ(j,0)ã contains the incident field co-
efficients and Õ(j,0) := Õ(krj). In the last equality
of (31),W(l) is transformed into W̃(j), with the cor-
responding coefficients given by c̃

(j)
j←l = O(j,l)c

(l)
l ,

where the subscript j ← l specifies the scattered
field partition of scatterer l developed (as a regular
VSWF expansion) about particle j. Note the ap-
plication of the translation-addition theorem clause
that applies only inside the ball of radius rjl (for
each l 6= j) centred at rj). This approach is strictly
valid only if the translation ball fully contains the
target scatterer’s surface, where the boundary con-
ditions are to be matched. While non-overlapping
spherical scatterers are always guaranteed to satisfy
this condition, elongated particles such as spheroids
can be problematic, because the singularity sphere
can cross the target scatterer’s surface if it is suffi-
ciently close (yet still not overlapping). These as-
pects are discussed in more details in Ref. 23 (and
references therein).

A self-consistent system of linear equations can
now be obtained by requiring that

c
(j)
j = Tj ẽ

(j)
j , (34)

where Tj is the "one-body" T -matrix characteris-
ing scatterer j, as defined above in Sec. 3.2. Note
that (34) reduces to (15) for a single scatterer
(j = N = 1) at the origin, because then ẽ

(j)
j 7→ ã,

c
(j)
j 7→ a, and Tj 7→ T. From (31), (33), and (34)

we obtain an equation expressed just in terms of
the field coefficients:

ẽ
(j)
j = ã(j) +

N∑
i=1
i6=j

O(j,i)Tiẽ
(i)
i , (35)

which Stout et al. label as "the fundamen-
tal multiple scattering equation" (Eq. 9 in
Ref. 14). It is helpful to rewrite the lin-
ear system (35) in block-matrix form:


I −O(1,2)T2 · · · −O(1,N)TN

−O(2,1)T1 I · · · −O(2,N)TN

...
...

. . .
...

−O(N,1)T1 −O(N,2)T2 · · · I




ẽ
(1)
1

ẽ
(2)
2
...

ẽ
(N)
N

 =


ã(1)

ã(2)

...
ã(N)

 , (36)

which is in the standard form Ax = b, with x
the unknown, and b a known input source. The
solution x gives all the ẽ

(i)
i ’s for a given ã and Ti

(i = 1, . . . , N), from which we can determine all

the c̃
(i)
i ’s using (34). Alternatively, we can use (34)

to substitute the excitation field coefficients for the
scattered field coefficients and, assuming the one-
body T -matrices are invertible, obtain

T−1j c
(j)
j −

N∑
i=1
i 6=j

O(j,i)c
(i)
i = ã(j), (37)


T−11 −O(1,2) · · · −O(1,N)

−O(2,1) T−12 · · · −O(2,N)

...
...

. . .
...

−O(N,1) −O(N,2) · · · T−1N




c
(1)
1

c
(2)
2
...

c
(N)
N

 =


ã(1)

ã(2)

...
ã(N)

 . (38)

To avoid involving the matrix inverses T−1j , we can also rearrange the linear system into

c
(j)
j −Tj

N∑
i=1
i6=j

O(j,i)c
(i)
i = Tj ã

(j), (39)
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
I −T1O

(1,2) · · · −T1O
(1,N)

−T2O
(2,1) I · · · −T2O

(2,N)

...
...

. . .
...

−TNO(N,1) −TNO(N,2) · · · I




c
(1)
1

c
(2)
2
...

c
(N)
N

 =


a
(1)
1

a
(2)
2
...

a
(N)
N

 , (40)

where a
(j)
j = Tj ã

(j) corresponds to irregular se-
ries coefficients for the scattered field of particle j
in isolation (from all the other N − 1 particles).2

Note that (36), (38), and (40) are all in the form
of a general matrix equation Ax = b, which can
be solved for the column vector(s) x without in-
verting the matrix A. However, formal inversion
is necessary when seeking collective T -matrix con-
structions, which describe the entire cluster’s re-
sponse to arbitrary incident fields, and can notably
provide analytical formulas for orientation-averaged
quantities. A number of collective T -matrices are
defined in the next section, following the different
treatments of Stout and Mackowski & Mishchenko.

3.5. Collective T-matrix constructions

The system of coupled matrix equations in (38)
can be solved for c

(j)
j by inverting the matrix to

obtain

c
(j)
j =

N∑
i=1

T(j,i)ã(i) =

(
N∑
i=1

T(j,i)Õ(i,0)

)
︸ ︷︷ ︸
:=Mackowski′s T

(j)
M

ã (41)

=

(
N∑
i=1

T(j,i)Õ(i,j)

)
︸ ︷︷ ︸

:=Stout′s T
(j)
S

ã(j),

(42)

where T(j,i) represent what we may call "pairwise
T -matrices", expressing the portion of the scat-
tered field from particle j in response to its excita-
tion by particle i; the T(j,i) matrices are arranged
and defined as follows

[
T(j,i)

]
=


T(1,1) T(1,2) · · · T(1,N)

T(2,1) T(2,2) · · · T(2,N)

...
...

. . .
...

T(N,1) T(N,2) · · · T(N,N)

 =


T−11 −O(1,2) · · · −O(1,N)

−O(2,1) T−12 · · · −O(2,N)

...
...

. . .
...

−O(N,1) −O(N,2) · · · T−1N


−1

(43)

=


T1 0 · · · 0
0 T2 · · · 0
...

...
. . .

...
0 0 · · · TN




I −O(1,2)T2 · · · −O(1,N)TN

−O(2,1)T1 I · · · −O(2,N)TN

...
...

. . .
...

−O(N,1)T1 −O(N,2)T2 · · · I


−1

(44)

=


I −T1O

(1,2) · · · −T1O
(1,N)

−T2O
(2,1) I · · · −T2O

(2,N)

...
...

. . .
...

−TNO(N,1) −TNO(N,2) · · · I


−1 

T1 0 · · · 0
0 T2 · · · 0
...

...
. . .

...
0 0 · · · TN

 (45)

2Note that (39) is equivalent to Mackowski’s Eq. 4 of Ref.
18, though in Mackowski & Mishchenko’s earlier papers the
same equation (Eq. 13 of Ref. 16 and Eq. 3 of Ref. 17) has
a plus sign instead of the minus, which may be entirely due
to a minus sign featuring in the incident field expansion (see
Eq. 4 in Ref. 16). This minus sign is absent in Eq. 2 of the
more recent Ref. 18, and the subsequent Eq. 4 matches our
equation (39).
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with the last two lines merely showing how the
one-body T -matrices can be factored out in two
different ways (left or right).

The T(j,i) matrices provide a complete and exact
solution to the multiple scattering problem. Cru-
cially, they retain all the information required to
calculate fields at any point within or outside the
cluster (except within the Rayleigh Hypothesis re-
gion for nonspherical scatterers). Stout et al. de-
notes these matrices "scatterer-centred transfer ma-
trices" (see Eq. 12 in Ref. 14), while Mackowski
& Mishchenko refer to them as "sphere-centred"
(see Eq. 16 in Ref. 16 and Eq. 4 in Ref. 17). Ar-
guably, both appellations are equally applicable to
T(j), which Mackowski & Mishchenko define one
way (see Eq. 61 in Ref. 17) without giving a partic-
ular name, while Stout et al. define T(j) differently
and call it "individual N -body transfer matrices"
(see equations. 14 and 27 in Ref. 14). The differ-
ence between both is explicitly stated in Eq. (41),
with Stout’s T

(j)
S retaining expansions from each

scatterer’s origin, and Mackowski & Mishchenko’s
T

(j)
M collapsing all expansions to a common origin

O. Note that neither definition should be confused
with the one-body T -matrices Tj of equation (34).

Mackowski & Mishchenko additionally consider
the collective scattering coefficients a for the irreg-
ular VSWF expansion about the common origin of
the whole cluster, i.e.

Esca(r; k) =EW(kr)a (46)

=EW(kr)

 N∑
j=1

Õ(0,j)c(j)

 ,

for‖r‖ > max ‖rj‖,

where the second equality relies on a particular
clause of the translation-addition theorem, which
is valid only outside of the smallest circumscribed
sphere (encompassing all N scatterers) centred at
the global frame’s origin. From (46) and (41) we
have

a =

N∑
j=1

Õ(0,j)c
(j)
j

=

N∑
j=1

Õ(0,j)
N∑
i=1

T(j,i)ã(i)

=

N∑
j=1

Õ(0,j)T
(j)
M ã, (47)

where a and ã are now related as in (15), providing
expressions for the collective T -matrix of the entire
cluster

T =

N∑
j=1

N∑
i=1

Õ(0,j)T(j,i)Õ(i,0)

=

N∑
j=1

Õ(0,j)T
(j)
M

=

N∑
j=1

Õ(0,j)T
(j)
S Õ(j,0), (48)

where in the last equality we used the fact that
T

(j)
M = T

(j)
S Õ(j,0). Mackowski & Mishchenko refer

to the collective T in (48) as the "cluster-centred"
T -matrix (see Eq. 19 in Ref. 16, Eq. 64 in Ref.
17, and Eq. 29 in Ref. 18). Note that (47) is valid
only outside of the cluster’s smallest circumscribed
sphere centred at the common origin; this collective
T -matrix does not allow the calculation of near-
fields between particles.17,18

In the terms program, when Scheme 6= 0
the collective T -matrix is calculated in the sub-
routine contractTmat of the multiscat mod-
ule; it is used to calculate orientation-averaged
far-field cross-sections. However, if the keyword
ScattererCentredCrossSections is included in
the input file, the collective T will not be calcu-
lated and the program will be using alternative
orientation-averaging formulas based on particle-
centred T -matrices T(i,j) instead.

3.6. Far-field cross-sections

In Mode = 2 the program calculates far-field
cross-sections for the given incident field direc-
tion(s) and four polarisations (two linear, two cir-
cular), as well as their average over the full solid
angle using analytical formulas.

3.6.1. Fixed orientation cross-sections
After solving for the particle-centred coefficients

c
(j)
j for a given ã andTj ’s (where j = 1, . . . , N), the

corresponding fixed-orientation extinction (σext),
scattering (σsca), and absorption (σabs) cross-
sections can be calculated. Here we state formu-
lae for σext and σsca expressed in terms of origin-
and particle-centred coefficients, without derivation
but with references to the previously-cited litera-
ture. For a non-absorbing incident medium (real-
valued wavenumber k, as must be the case through-
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out terms), σabs can be inferred using energy con-
servation: σabs = σext − σsca.

Fixed-orientation extinction cross-sections are
calculated using

σext =− <{ã
†a}

k2
= − 1

k2

lmax∑
l=1

<{ã∗l al} (49)

=− 1

k2
<


N∑
j=1

ã(j)†c(j)

 (50)

=− 1

k2

N∑
j=1

lmax∑
l=1

<
{
ã
(j)∗
l c

(j)
l

}
(51)

=:

N∑
j=1

σ
(j)
ext, (52)

where <{. . . } indicates taking the real part of the
quantity inside the braces, ã(j)† is conjugate trans-
pose of the column vector ã(j), ã(j)∗l is the complex
conjugate of the vector component a(j)l , and k is the
wavenumber in the incident medium. Note that,
since <{ab∗} = <{a∗b} for any complex numbers a
and b, (49) is equivalent to Eq. H.65 of Ref. 19 and
Eq. 5.18a of Ref. 4 (provided |Einc

0 |2 = E = 1).
Equation (51) is taken from Eq. 29 of Ref. 15,
which follows from simplifying Eq. 43 of Ref. 14
and substituting into Eq. 42 of the same reference.
Also note that σext is (formally) separable into ad-
ditive contributions from individual scatterers, i.e.
σext =

∑
j σ

(j)
ext.

Fixed-orientation scattering cross-sections can be
calculated using

σsca =
|a|2

k2
=

1

k2

lmax∑
l=1

a∗l al (53)

=
1

k2

N∑
j=1

N∑
i=1

a(j)†Õ(j,i)a(i) (54)

=
1

k2

N∑
j=1

N∑
i=1

lmax∑
l=1

lmax∑
l′=1

a
(j)∗
l Õ

(j,i)
ll′ a

(i)
l′ (55)

=:

N∑
j=1

σ(j)
sca, (56)

where |a|2 = a†a. Note that (53) is equivalent to
Eq. H.64 of Ref. 19 and Eq. 5.18b of Ref. 4 (pro-
vided |Einc

0 |2 = E = 1); while (55) is from Eq. 29
of Ref. 15, which follows from substituting Eq. 45
of Ref. 14 into Eq. 42 of the same reference.

In terms, with Mode = 2 all the far-
field cross-sections are calculated in the
main subroutine spectrumFF. If the keyword
ScattererCentredCrossSections is included in
the input file, fixed orientation cross-sections, are
calculated using particle-centred coefficients via
the subroutine calcCsStout (equations 51 and 55
are implemented in this subroutine). Otherwise,
they are calculated using origin-centred coefficients
via the subroutine calcCs.

3.6.2. Orientation averaged cross-sections
One attractive feature of the T -matrix method

is that it provides relatively simple means of cal-
culating orientation-averaged cross-sections, herein
denoted by 〈σext〉, 〈σsca〉 and 〈σabs〉; these are of-
ten used to describe a randomly oriented scatterer,
or, equivalently, light incident from a random direc-
tion56. Note that in terms the orientation averag-
ing applies to the cluster as a whole, not to indi-
vidual particles within the cluster: they are consid-
ered rigidly held together (attached on a template,
in practice). As with the fixed-orientation cross-
sections, orientation averages can be calculated ei-
ther from the origin-centred collective T -matrix T,
or from the particle-centred T -matrices T(i,j).

〈σext〉 =− 2π

k2
<{Tr(T)} (57)

=− 2π

k2

∑
j

∑
k

<
{

Tr
(
T(j,k)Õ(k,j)

)}
(58)

=:
∑
j

〈σext,j〉 (59)

〈σsca〉 =
2π

k2
Tr
(
T†T

)
(60)

=
2π

k2

∑
j

∑
k

Tr

([∑
l

Õ(k,l)T(l,j)

]†
(61)[∑

i

T(k,i)Õ(i,j)

])
=:
∑
j

〈σsca,j〉 (62)

The cluster’s absorption cross-section can be calcu-
lated from energy conservation,

〈σabs〉 = 〈σext〉 − 〈σsca〉. (63)

Alternatively, it may also be calculated directly
from the flux of the Poynting vector of the total
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field entering the surface of each individual particle.
This provides the physically-meaningful portion of
energy absorbed within each scatterer j, and their
sum adds up to the total absorption cross-section
for the cluster. Following Stout14 and restricting
ourselves to non-magnetic, homogeneous spheres,

〈σabs〉 =
2π

k2

∑
j

∑
k

∑
l

Tr

([
T(j,k)

]†
Γj (64)

T(j,l)Õ(l,k)

)
=:
∑
j

〈σabs,j〉 (65)

where the absorption matrix Γj is of the form

Γj =

[
Cj 0
0 Dj

]
. (66)

Cj and Dj are diagonal matrices with matrix ele-
ments

Cjn =
<
[
iρjψ

∗
n(ρjχj)ψ

′

n(ρjχj)
]

|ψn(ρjχj)ψ
′
n(χj)− ρjψ′n(ρjχj)ψn(χj)|2

(67)

Dj
n =

<
[
iρ∗jψ

∗
n(ρjχj)ψ

′

n(ρjχj)
]

|ρjψn(ρjχj)ψ
′
n(χj)− ψ′n(ρjχj)ψn(χj)|2

(68)

where ψn(x) are Ricatti-Bessel functions: ψn(x) =
xjn(x), χj = kRj , and ρj = kj/k. k is the
wavenumber in the incident medium, Rj the radius
of sphere j, and kj the wavenumber inside (homo-
geneous) sphere j.

When Scheme = 1 or 2 and the input file
requests ScattererCentredCrossSections, the
orientation-averaged cross-sections are calculated in
the subroutine calcOaStout which uses particle-
centred T -matrices T(i,j) (Eqs. 58, 61, 64). Per-
particle orientation-averaged absorption is cur-
rently only returned for homogeneous spheres, as
the generalisation of Eq. 64 to arbitrary scatterers
is not yet available.

In other cases, orientation-averaged cross-
sections are calculated in the subroutine
calcOAprops, which uses the common-origin
collective T -matrix T (Eqs. 57, 60, 63). Note
that these calculations based on collective T are
much faster than those based on particle-centred
T -matrices T(i,j).

3.6.3. Circular dichroism
Circular dichroism (CD) is defined as the differ-

ence between the optical properties of the structure
under left and right circularly polarised incident
fields. Its calculation is more natural when VSWFs
are expressed in the "helicity" basis, related to the
standard "parity" (te, tm) basis via the helicity
operator (Λ = ∇×

k ) leading to21,

ZR,nm =
1√
2

(Mnm −Nnm), ΛZR,nm = −ZR,nm

(69)

ZL,nm =
1√
2

(Mnm + Nnm), ΛZL,nm = ZL,nm,

(70)

where the subscripts (R) and (L) refer to right
and left circularly polarised light. The correspond-
ing T -matrix describes the scattering of circularly-
polarised incident fields in the helicity basis.

Using these definitions the relation between the
T -matrix blocks in parity and helicity bases reads[
TLL TLR

TRL TRR

]
=

1

2

[
I I
I −I

] [
T11 T12
T21 T22

] [
I I
I −I

]
,

(71)

where I is the identity matrix with the same size
as the 4 matrix blocks (T11, etc.). The orientation
averaged cross-sections for a specific (L) or (R) po-
larisation can be obtained from Eqs. (59), (62), by
restricting the coefficients of the incident field to
one helicity,21

〈σsca〉L =
4π

k2
Tr
(
T†LLTLL + T†RLTRL

)
(72)

〈σext〉L =
4π

k2
< [Tr (TLL)] (73)

〈σabs〉L =
4π

k2
<
[
Tr
(
TLL(I−T†LL)−T†RLTRL

)]
(74)

with simple changes L↔ R for R polarisation. Cir-
cular dichroism is then obtained as the difference
between (L) and (R) cross-sections.

The subroutine calcOAprops implements these
formulas, calculated for Scheme 6= 0.

3.6.4. Stokes scattering vector and phase matrix
Some light scattering applications require charac-

terising the angular and polarisation characteristics
of the scattered field for a specified incident plane
wave. terms uses the Stokes vector formalism to
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describe such situations in Mode = 3, following Ref.
4. From the incident electric field E0, the compo-
nents of the incident Stokes vector read

I =


I
Q
U
V

 =
1

2

√
ε

µ


E0θE

∗
0θ + E0ϕE

∗
0ϕ

E0θE
∗
0θ − E0ϕE

∗
0ϕ

−2<(E0θE
∗
0ϕ)

2=(E0θE
∗
0ϕ)

 (75)

The 4×4 phase matrix Z relates incident and scat-
tered field Stokes vectors, with the following expres-
sions,

Z11 = 1
2 (|S11|2 + |S12|2 + |S21|2 + |S22|2) (76)

Z12 = 1
2 (|S11|2 − |S12|2 + |S21|2 − |S22|2) (77)

Z13 = −<(S11S
∗
12 + S22S

∗
21) (78)

Z14 = −=(S11S
∗
12 − S22S

∗
21) (79)

Z21 = 1
2 (|S11|2 + |S12|2 − |S21|2 − |S22|2) (80)

Z22 = 1
2 (|S11|2 − |S12|2 − |S21|2 + |S22|2) (81)

Z23 = −<(S11S
∗
12 − S22S

∗
21) (82)

Z24 = −=(S11S
∗
12 + S22S

∗
21) (83)

Z31 = −<(S11S
∗
21 + S22S

∗
12) (84)

Z32 = −<(S11S
∗
21 − S22S

∗
12) (85)

Z33 = <(S11S
∗
22 + S12S

∗
21) (86)

Z34 = =(S11S
∗
22 + S21S

∗
12) (87)

Z41 = −=(S21S
∗
11 + S22S

∗
12) (88)

Z42 = −=(S21S
∗
11 − S22S

∗
12) (89)

Z43 = =(S22S
∗
11 − S12S

∗
21) (90)

Z44 = <(S22S
∗
11 − S12S

∗
21) (91)

where S is the standard 2 × 2 amplitude scatter-
ing matrix linking incident and scattered transverse
field vectors in the respective directions (r̂inc) and
(r̂sca),4

[
Esca
θ (r̂sca)

Esca
ϕ (r̂sca)

]
=

exp (ikr)

r
S
(
r̂sca, r̂inc

) [ Einc
0θ

Einc
0ϕ

]
.

(92)
The amplitude scattering matrix S is derived
from the collective T -matrix following Ref. 4
(Eqs. 5.277–5.280).

3.6.5. Differential scattering cross-section
The differential scattering cross-section describes

the angular distribution of the scattered light. It
depends on the polarisation of the incident wave as
well as the incidence and scattering directions, and

is readily calculated from the Stokes phase matrix
and incident Stokes vector4

dCsca

dΩ
=

1

Iinc
[Z11(r̂, n̂inc)Iinc + Z12(r̂, n̂inc)Qinc

+ Z13(r̂, n̂inc)Uinc + Z14(r̂, n̂inc)Vinc].

(93)

3.7. Near-field quantities

Solving the linear system of multiple-scattering
equations provides the scattered field coefficients,
from which we can compute the complex vector
fields E,B everywhere in space, as well as derived
quantities such as |E|2, |E|4, or the local degree of
optical chirality C ∝ =(E∗ · B). If only specific
directions of incidence are needed, the system may
be solved directly, without inversion (Scheme = 0,
fastest). However, in some circumstances, such as
the description of randomly-oriented clusters, we
also seek orientation-averaged near-field quantities,
requiring Scheme > 0.

Near-field values are calculated in Mode = 1 in
terms, with mapNF the main subroutine which re-
ceives input values and dispatches to other subrou-
tines for the calculation of specific near-field quan-
tities.

3.7.1. Orientation averaged local field intensity
Following Ref. 53, the local field intensity ex-

pressed in terms of the scatterer-centred T -matrices
T(i,j) can be averaged over all possible directions of
light incidence, yielding

〈|Etot(kr)|2 〉 = 2πE2 (A0 + B0 + C0 ) (94)

where
A0 = 1/2π, (95)

B0 = 2<
N∑
j=1

N∑
l=1

Tr

(
W̃†(rl)P(r̂l, r̂j)W(rj)T

(j,l)
N

)
,

(96)

C0 = Tr

(
N∑
j=1

N∑
l=1

N∑
i=1

N∑
k=1

O(l,k)T
†(i,k)
N W†(ri)

(97)

P(r̂i, r̂j)W(rj)T
(j,l)
N

)

where P(r̂i, r̂j) = Ct(r̂i)C(r̂j) and C(r̂j) trans-
forms vector in the jth particle spherical coordinate
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basis to the cartesian coordinate system:

C(r̂j) =

sin θj cosϕj cos θj cosϕj − sinϕj
sin θj sinϕj cos θj sinϕj cosϕj

cos θj − sin θj 0

 .
(98)

The terms A0, B0, C0 correspond to the incident
electric field, the interference between incident and
scattered electric field, and the scattered electric
field, respectively.

The orientation average of the local field in-
tensity is mainly calculated in the subroutine
calcOaExtField of the multiscat module.

3.7.2. Optical chirality (C )
In order to evaluate the local degree of optical

chirality (C ), the total electric E = Esca +Einc and
magnetic B = Bsca + Binc vector fields are first
evaluated at the requested position, from which C
is obtained as57

C =
−ωε0

2
=(E∗.B) (99)

From the Maxwell equation B = −iω−1∇×E, the
magnetic field is expressed in the VSWF basis with
the same coefficients as the electric field (with a
simple swap and a prefactor),

B(r; k) =
−ik
ω

nmax∑
n=1

n∑
m=−n

[a1,nmNnm(kr)+ (100)

a2,nmMnm(kr)]

Thus, the field coefficients (a1,nm, a2,nm) provide
us with both the electric and magnetic field, from
which we derive the local degree of optical chiral-
ity C . The subroutine calcLDOC of the multiscat
module calculates C . The value of C is often nor-
malised with respect to the degree of chirality of
circularly-polarised plane waves C = ±kE2ε0/2 (+
for RCP and − for LCP, respectively), with incident
electric field E ≡ |Einc|, defining

C =
2

kε0E2
C . (101)

3.7.3. Orientation-averaged optical chirality 〈C 〉
For the calculation of orientation-averaged lo-

cal degree of optical chirality 〈C 〉, we combine the
near-field averaging procedure of Sec. 3.7.1 with the
treatment of optical activity in Sec. 3.6.3, express-
ing electric and magnetic fields as VSWFs in the

helicity basis. We refer the reader to Ref. 22 for
details of the derivation, and summarise the result:

〈C 〉 = 2πkε0E
2< (A0 +B0 + C0 +D0) (102)

where, for right-handed circular polarisation

A
(R)
0 =−1/4π

B
(R)
0 =

N∑
j=1

N∑
l=1

Tr
(
Z̃†R(krl)

[
−U(R)

j,l + V(R)

j,l

])

C
(R)
0 =

N∑
j=1

N∑
l=1

Tr
([
−U†(R)

j,l −V†(R)

j,l

]
Z̃R(krl)

)

D
(R)
0 =

N∑
j=1

N∑
l=1

N∑
i=1

N∑
k=1

Tr

(
O

(k,l)
RR

[
U†(R)

j,l + V†(R)

j,l

]
[
−U(R)

i,k + V(R)

i,k

])
.

(103)

where Z̃R and Z̃L are the left and right regular
VSWFs in helicity basis and ZR, ZL the correspond-
ing irregular VSWFs (cf Eqs. 69, 70). The terms
U(R)

j,l and V(R)

j,l (and their Hermitian transpose) are
introduced for conciseness and defined as,

U(R)

j,l := ZR(krj)T
(j,l)
RR ; U†(R)

j,l = T
†(j,l)
RR Z†R(krj)

V(R)

j,l := ZL(krj)T
(j,l)
LR ; V†(R)

j,l = T
†(j,l)
LR Z†L(krj)

(104)
The corresponding formulas for left-handed circular
polarisation read

A
(L)
0 =+1/4π

B
(L)
0 =

N∑
j=1

N∑
l=1

Tr
(
Z̃†L(krl)

[
U(L)

j,l −V(L)

j,l

])

C
(L)
0 =

N∑
j=1

N∑
l=1

Tr
([

U†(L)

j,l + V†(L)

j,l

]
Z̃L(krl)

)

D
(L)
0 =

N∑
j=1

N∑
l=1

N∑
i=1

N∑
k=1

Tr

(
O

(k,l)
LL

[
U†(L)

j,l + V†(L)

j,l

]
[
U(L)

i,k −V(L)

i,k

])
.

(105)

with

U(L)

j,l := ZL(krj)T
(j,l)
LL ; U†(L)

j,l = T
†(j,l)
LL Z†L(krj)

V(L)

j,l := ZR(krj)T
(j,l)
RL ; V†(L)

j,l = T
†(j,l)
RL Z†R(krj)

(106)
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Note that the sum of B0 and C0 simplifies to,

<
(
B

(R)
0 + C

(R)
0

)
= −2<

 N∑
j=1

N∑
l=1

Tr
(
Z̃†R(krl)U

(R)

j,l

)
(107)

and

<
(
B

(L)
0 + C

(L)
0

)
= 2<

 N∑
j=1

N∑
l=1

Tr
(
Z̃†L(krl)U

(L)

j,l

) .

(108)
These formulas (102–108) are implemented in the
subroutine calcOaLDOC of the multiscat module.

3.8. Solution schemes
terms offers several options, selected by Scheme,

to solve the multiple scattering problem described
in Section 3.4. It generally requires determining the
particle-centred coefficients c

(j)
j for given individ-

ual scatterer properties (described by T
(j)
1 ) and an

excitation field (described by ã(j)) impinging from
a particular direction. This can be achieved by
solving the linear system of equations in (36) for
c
(j)
j without performing matrix inversion, thus pro-

ducing a complete description of the scattered field
for the given excitation. The linear system can be
solved with multiple right-hand sides, representing
different excitations, with standard linear algebra
routines. Performing matrix inversion to determine
the collective T -matrix becomes worthwhile only
when many impinging directions are to be consid-
ered, or when orientation-averaged quantities are of
primary interest.

A brute force approach to solving the multi-
ple scattering problem would be to construct the
Nlmax × Nlmax matrix in equation (36) and then
invert it to obtain the pairwise scatterer-centred
T -matrices T(i,j). However, this approach is com-
putationally demanding. To help alleviate the cost
of one large matrix inversion, Stout et al.14,15 pro-
posed a recursive scheme where a smaller (lmax ×
lmax) matrix is inverted N − 1 times.

3.8.1. Recursive scheme with matrix balancing
In the recursive algorithm described by Stout et

al.14, the elements of T
(j,i)
N are accumulated re-

cursively from auxiliary subsystems, incrementally
built up from one to N particles. The recursive sys-
tem is prescribed by the following four equations:

T
(N,N)
N =

[ [
T

(N)
1

]−1
(109)

−
N−1∑
j=1

O(N,j)

N−1∑
i=1

T
(j,i)
N−1O

(i,N)

]−1
=: S−1, (110)

T
(N,i)
N =T

(N,N)
N

N−1∑
j=1

O(N,j)T
(j,i)
N−1

 , i 6= N,

(111)

T
(j,N)
N =

N−1∑
i=1

T
(j,i)
N−1O

(i,N)

T
(N,N)
N , j 6= N,

(112)

T
(j,i)
N =T

(j,i)
N−1 (113)

+

N−1∑
l=1

T
(j,l)
N−1O

(l,N)

T
(N,i)
N , j, i 6= N,

(114)

where a common matrix sum has been underlined.
Note that only one lmax × lmax matrix is inverted
on each of the N − 1 iterations. The inverted ma-
trix becomes ill-conditioned for large nmax, but the
associated problems can be (at least partly) circum-
vented by applying the recursive scheme to appro-
priately "balanced" matrices and coefficients:15[

T̂
(j,i)
N

]
sp,s′p′

:=
[
D(j)T

(j,i)
N [D̃(i)]−1

]
sp,s′p′

(115)

=
ξn(p)(kMRj)

ψn′(p′)(kMRi)

[
T

(j,i)
N

]
sp,s′p′[

T̂
(j)
1

]
sp,s′p′

:=
[
D(j)T

(j)
1 [D̃(j)]−1

]
sp,s′p′

(116)

=
ξn(p)(kMRj)

ψn′(p′)(kMRj)

[
T

(j)
1

]
sp,s′p′[

Ô(j,i)
]
sp,s′p′

:=
[
D̃(j)O(j,i)[D(i)]−1

]
sp,s′p′

(117)

=
ψn(p)(kMRj)

ξn′(p′)(kMRi)

[
O(j,i)

]
sp,s′p′

,

where D̃(j) and D(j) are regular and irregular di-
agonal matrices with the Riccati-Bessel functions
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ψn(x) = xjn(x) or ξn(x) = xhn(x) on the diagonal.
(Here, jn(x) and hn(x) are, respectively, the spheri-
cal Bessel and Hankel functions of the first kind)19.
Note that Stout et al.15’s "matrix balancing" may
also be regarded as "left and right precondition-
ing", as the matrix to be inverted is essentially left-
and right-multiplied by two different matrices to
improve its condition number, which aims to make
numerical inversion more robust and accurate. In-
stead of balancing throughout, as Stout et al.15 pro-
pose to do, we prefer to localise the balancing act
just at the inversion step in (110), i.e.

T
(N,N)
N =S−1

=
[
D(N)

]−1
D(N)S−1

[
D̃(N)

]−1
D̃(N)

(118)

=
[
D(N)

]−1 [
D̃(N)S

[
D(N)

]−1]−1
D̃(N)

=:
[
D(N)

]−1
Ŝ−1D̃(N) (119)

where Ŝ is obtained by balancing S analogously to
T̂

(j,i)
N . Note that equation (110) can be factored in

two ways:

T
(N,N)
N = T

(N)
1 S−1R = S−1L T

(N)
1 (120)

where

SR =

I− N−1∑
j=1

O(N,j)

N−1∑
i=1

T
(j,i)
N−1O

(i,N)

T
(N)
1


(121)

SL =

I−T
(N)
1

N−1∑
j=1

O(N,j)

N−1∑
i=1

T
(j,i)
N−1O

(i,N)


(122)

either of which may be preferred if T(N)
1 is difficult

to invert. To facilitate the inversion of SL and SR,
slightly different balancing (and subsequent unbal-

ancing) should be used:

S−1L =
[
D

(N)
N

]−1 [
D

(N)
N SL

[
D

(N)
N

]−1]−1
D

(N)
N

(123)

=:
[
D

(N)
N

]−1
Ŝ−1L D

(N)
N , (124)

S−1R =D̃
(N)
N

[[
D̃

(N)
N

]−1
SRD̃

(N)
N

]−1 [
D̃

(N)
N

]−1
(125)

=:D̃
(N)
N Ŝ−1R

[
D̃

(N)
N

]−1
. (126)

Here SL is balanced using only irregular weights,
while SR is balanced like a T -matrix using only
regular weights. In our experience, ŜR is much bet-
ter conditioned for inversion than Ŝ.

In terms program the balancing formulas are
implemented in the subroutines balanceVecJ and
balanceMatJI.
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3.8.2. Mackowski & Mishchenko’s scheme
From equations (43) and (45) it follows that


I · · · −T(1)

1 O(1,N)

...
. . .

...
−T(N)

1 O(N,1) · · · I



T

(1,1)
N · · · T

(1,N)
N

...
. . .

...
T

(N,1)
N · · · T

(N,N)
N

 =


T

(1)
1 · · · 0
...

. . .
...

0 · · · T
(N)
1

 , (127)

or, equivalently,

T
(i,i)
N −

∑
j 6=i

T
(i)
1 O(i,j)T

(j,i)
N = T

(i)
1 , (128)

which is a linear system of the general form AX =
B, where we want to find matrix X for a given A
and B, which contains multiple right hand sides.
That is, each column of X and B can be treated

independently, so we have to solve many linear sys-
tems of the form Axν = bν , where xν and bν are
the ν’th column of X and B, respectively.

Mackowski & Mishchenko (M&M)17,18 "con-
tract" the second particle index of T

(j,i)
N , using

T
(j)
N =

∑
iT

(j,i)
N Õ(i,0), to rewrite the linear

system in terms of individual (as opposed to
pairwise) scatterer-centred T -matrices T

(j)
N , i.e.


I · · · −T(1)

1 O(1,N)

...
. . .

...
−T(N)

1 O(N,1) · · · I




T
(1)
N
...

T
(N)
N

 =


T

(1)
1 Õ(1,0)

...
T

(N)
1 Õ(N,0)

 , (129)

or, equivalently,
T

(i)
N −

∑
j 6=i

T
(i)
1 O(i,j)T

(j)
N = T

(i)
1 Õ(i,0), (130)

where the number of independent linear systems of
the form Axν = bν is now reduced. M&M use the
biconjugate gradient method to solve Axν = bν for
each ν, where the row order (i.e. length of each col-
umn vector) is predetermined from Mie theory for
each (spherical) scatterer in isolation, and the trun-
cation limit for the column order (i.e. the maximum
value of ν) is determined on-the-fly from the conver-
gence of each scatterer’s contribution to the collec-
tive rotationally-averaged extinction cross-section
(see Eq. 66 in Ref. 17).

Mackowski & Mishchenko’s scheme is imple-
mented as Scheme = 3 in terms, with the addi-
tion of balancing discussed above, though we use a
direct linear solver instead of an iterative one.

4. Conclusion and outlook

We have introduced terms, an open-source
Fortran program to simulate light scattering by

rigid clusters of nanoparticles, in fixed or random
orientation with respect to incident light. terms
implements several superposition T -matrix algo-
rithms and recently-derived formulas for analytical
orientation-averaging of far-field and near-field
optical properties. This manuscript provides a
brief summary of the method and references the
key formulas implemented in the program. A
companion website13 includes a comprehensive
suite of self-contained examples illustrating the
program’s capabilities in realistic calculations. We
hope this program will be useful to the light scat-
tering community of researchers, and we welcome
contributions to extend the program’s use cases.
As noted in the introduction, the superposition
T -matrix method has been implemented in several
other publicly-available programs, each with its
own set of features, and we welcome collaboration
to combine these efforts. We conclude below
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with an outlook of the possible extensions we are
considering for the future development of terms.

Code improvements

• Optional use of an iterative solver to solve large
linear systems

• Import/export of T -matrices in HDF5 format

• Import of T -matrices for more general particle
shapes, from Scuff-EM44

• Built-in calculation of spheroid T -matrices
(port of smarties8)

• Improved methods for the calculation of
TACs58

• Additional built-in material dielectric func-
tions

• Optimisation of time-consuming calculations

New features

• Calculation of internal fields for non-spherical
particles obtained via EBCM8 (exporting ma-
trix R = Q−1)

• Orientation-averaged internal fields for coated
spheres and nonspherical particles, adapting
Ref. 14

• Orientation-averaged partial absorptions for
layered particles

• Orientation-averaged absorption and scatter-
ing circular dichroism in Stout’s scatterer-
centred formalism (not from the collective T -
matrix)

• Chiral media, following Ref. 59

• T -matrix for anisotropic core-shell spheres, fol-
lowing Ref. 60

• T -matrix for coated spheroids, following Refs.
61,62

• Dipolar incident field

• T -matrix of model molecules, following Ref. 63

• Conversion from T -matrix to “Higher-Order
Polarizability Tensors”, following Ref. 41

• Extension to infinite periodic arrays, following
Ref. 31

• Integral representation of near-fields in the
Rayleigh region, following Ref. 43

• Plane-wave expansion for particles with inter-
secting circumscribed spheres, following Ref.
42

• Geometry optimisation (via external libraries)

We also consider porting the codebase to the Ju-
lia language64, to benefit from an interactive envi-
ronment to develop and test new features, without
sacrificing run-time performance.
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A. Appendix

A.1. Keywords
List of case-sensitive keywords and corresponding arguments supported by terms. Optional arguments

are enclosed in square brackets (nested in some cases).

Main input parameters

ModeAndScheme M S
If present, this keyword must appear first in the input file. It takes two arguments: positive integer M
specifying the desired calculation mode; and non-negative integer S specifying the solution scheme to be
used. The default values are M = 2 and S = 3.

Mode of calculation

• M = 1 triggers a single- or multi-wavelength calculation of near fields E, B and optical chirality C , at
fixed incidence directions and/or orientation-averaged

• M = 2 triggers a single- or multi-wavelength calculation of far-field properties (e.g. spectra of optical
cross-sections), at fixed incidence directions and/or orientation-averaged

• M = 3 triggers a single- or multi-wavelength calculation of polarimetric properties, such as Stokes
scattering vectors, phase matrix, and differential scattering cross sections for multiple incidence and/or
scattering angles

Scheme of solution

• S = 0 will seek solutions for the given angles of incidence, without seeking the collective T -matrix

• S > 0 will calculate the collective T -matrix either (S = 1 ) by direct inversion of the complete linear
system to obtain T (i,j), or (S = 2 ) by using Stout’s iterative scheme for T (i,j), or (S = 3 ) by using
Mackowski & Mishchenko’s scheme for T (i). Note that fixed-orientation cross-sections are also calculated
when S > 0.

Scatterers N
This keyword must appear last in the inputfile, with a single positive integer argument N specifying the
number of scatterers. The following N lines specify all the required parameters per scatterer, and each line
must contain five or more space-separated fields, i.e.

Tag x y z R [ a b c [ d ] ] ( if Tag(1:2) = "TF" )
[ a [ b [ c ] ] ] ( if Tag(1:2) != "TF" )

where Tag is a contiguous string, which may contain one underscore to separate the root from the suffix; x,
y, z are the cartesian coordinates (in the lab frame) for the scatterer, whose smallest circumscribing sphere
has radius R. All other subsequent parameters (inside square brackets) depend on the root of Tag.

Before the root of Tag is parsed, the code first looks for a suffix of the form _S? and associates it with a
multipole selection predefined using the MultipoleSelections keyword.

If the root of Tag is either “TF1”, “TF2”, . . . , or “TF9”, which correspond to a 1-body T -matrix file listed
under the TmatrixFiles keyword, floats a, b, and c can be supplied to specify the Euler angles describing
the scatterer orientation (default angle values are all zero). Another float d may be included to specify the
aspect ratio for spheroids, which is currently only used for mapping local field intensity and visualising the
geometry. Note that d is interpreted as the ratio of polar (along z) to equatorial (along x or y) length, so
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that d > 1 for prolate spheroids, d < 1 for oblate spheroids, and d = 1 for spheres (default). Note that for
nonspherical particles the circumscribing sphere radius R is used to check for potential geometrical overlap
between particles, but also in the balancing scheme.

If the root of Tag is not “TF?”, the 1-body T -matrix is computed using Mie theory, which is applicable
to coated spheres. The expected Tag format is L0@L1@L2@L3, with the character “@” delimiting substrings
that specify the material dielectric function of each concentric region inside the scatterer, starting from the
core (L0 ) and going outward. The number of coats is inferred from the number of instances of “@” and is
currently capped at 3. Tag of a homogeneous sphere (without layers) should not contain any “@”, i.e. Tag =
L0. Currently accepted values for L? are: “Au”, “Ag”, “Al”, “Cr”, “Pt”, “Pd”, “Si”, and “Water” which trigger
internal calculation of the wavelength-dependent dielectric functions for the required material, or “DF1”,
“DF2”, . . . , “DF9” to impose a custom dielectric function listed under the DielectricFunctions keyword.
For coated spheres, the outer radius of each region must be specified by floats R, a, b, c in the order of
decreasing size (i.e. going radially inward).

TmatrixFiles Nfiles
Specifies the number of external T -matrix files (default: Nfiles = 0 ). The subsequent Nfiles lines are each
read as a string and then interpreted as a filename. Wrap the string in quotation marks if it contains the
relative path or special characters, e.g. "../../tmatrix_Au_spheroid_50x20_water.tmat". Note that the
wavelengths in each file must exactly correspond to the values specified by the Wavelength keyword.

The T -matrix file format is as follows:

• First line is a comment (starts with a #) describing the format # s sp n np m mp Tr Ti

• Second line is also a comment and starts with # lambda= N1 nelements= N2 where N1 is the wave-
length in nanometres, and N2 is the number of T -matrix elements to be read below

• Subsequent lines contain the indices and T -matrix values for this particular wavelength,

1. s, sp are the row (resp. column) index of the multipole mode (1: magnetic, or 2: electric)
2. n, np index the multipole degree
3. m, mp index the multipole order
4. Tr, Ti give the real and imaginary part of the T -matrix element

• If the file contains multiple wavelengths each wavelength-block is appended below the others, starting
with a line # lambda= N1 nelements= N2

An example is show below,

# s sp n np m mp Tr Ti | prolate Au spheroid in water, a = 10 c = 20
# lambda= 400 nelements= 136 epsIn= -1.649657+5.771763j

1 1 1 1 -1 -1 -1.189109253832815e-04 -2.161746691903687e-05
1 1 1 1 0 0 -5.597968829951113e-05 -3.444956295771378e-05

... [truncated]
2 2 4 4 3 3 -3.794740062663782e-11 5.636725538124517e-11
2 2 4 4 4 4 -1.113090425618089e-11 1.707927691863483e-11

# lambda= 402 nelements= 136 epsIn= -1.661947+5.778032j
1 1 1 1 -1 -1 -1.160926707256971e-04 -2.119092055798298e-05
1 1 1 1 0 0 -5.467319805259745e-05 -3.371696756234449e-05

... [truncated]
2 2 4 4 3 3 -1.279170882307354e-15 1.378894188143029e-13
2 2 4 4 4 4 -3.752182192799965e-16 4.101975575297762e-14

... [truncated]
# lambda= 800 nelements= 136 epsIn= -24.236565+1.458652j
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1 1 1 1 -1 -1 -7.146139984375531e-07 -1.120611667309835e-05
1 1 1 1 0 0 -4.379156367712547e-07 -7.955074171282911e-06

... [truncated]
2 2 4 4 3 3 -1.240958755455683e-15 1.346747233206165e-13
2 2 4 4 4 4 -3.640885008022631e-16 4.006450678480949e-14

... [truncated]

DielectricFunctions Nfuns
Specifies the number of custom dielectric functions (default: Nfuns = 0 ). The subsequent Nfuns lines are
each read as a string and then interpreted as either (i) a filename with a relative path or (ii) real and
imaginary parts of a constant (i.e. wavelength independent) value. Wrap each string in quotation marks,
e.g. "../../epsAg.dat" or "2.25d0 0.0d0". The files should be in three-column format: the wavelength in
nm followed by the real and imaginary parts of the relative dielectric function on each line. The wavelength
range in the file must fully contain the range specified by the Wavelength keyword, but the values need not
correspond exactly as they will be linearly interpolated.

Medium X
Sets the real-valued dielectric constant of the host medium (default value is 1.0 ). If X < 0 then its magnitude
is interpreted as a refractive index (s), from which the dielectric constant is calculated as X = s2.

Wavelength L1 [ L2 n ]
Without the optional arguments, this keyword changes the default wavelength of 666.0 nm to a new value
L1. Including the optional arguments will specify a closed interval [ L1, L2 ] divided into n regular grid
spacings, thus producing n+1 wavelengths.

Incidence a b c [ p ] / [ na nb nc ]
or
Incidence file filename [p]
This keyword modifies the incident plane-wave. The default travel direction (along z in lab-frame) can be
changed by the Euler angles a in the range [0, 2π) and b in the range [0, π], coinciding with the azimuthal and
the polar angles, respectively, of the spherical polar coordinates in the lab frame. In addition, the amplitude
vector can then be rotated about the new travel direction by the third Euler angle c in the range [0, 2π). All
three Euler angles are defined in accordance with the right-hand rule, and the sequence of rotation angles
a,b,c corresponds to the intrinsic ZY’Z’ convention. That is: rotate by a about the current z -axis, then by
b about the new y-axis, and finally by c about the new z -axis.

Near-field and polarimetric calculations, i.e. in modes M = 1 and M = 3, require the polarisation of
incident light to be specified. The polarisation is set by integer p, with |p| = 1 setting linear polarisation,
|p| = 2 setting circular polarisation, and the sign selecting one of the two Jones vectors in each case (positive:
x -linear-polarised or R-circular-polarised; negative: y-linear polarised or L-circular-polarised). Note: for a
circularly polarised wave travelling along z, right-circular (R) polarisation means that the amplitude vector
is rotating clockwise in the xy-plane from the receiver’s viewpoint (looking in the negative z direction).

The integer p can be omitted in mode M = 2, because its output is always calculated for all four polari-
sations.

A negative value of argument a, b, and/or c will trigger discretisation of the corresponding angle range
to produce −a grid points (resp. −b or −c). The grid points are uniformly spaced for the first and
the third Euler angles, but for the second (i.e. polar) angle the discretisation is such that the cosine is
uniformly spaced. Note that the discretisation is constructed so that orientational averages are computed
as a uniformly weighted Riemann sum with the midpoint rule. The weight wi of each grid point i is simply
wi = 1/ngps, where ngps is the total number of grid points. The range maximum of each angle can be divided
by an (optional) integer na, nb, and nc, to help avoid evaluating redundant grid points in the presence of
symmetry.
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Multiple incidences can also be read from a file, in which case the argument a must be a string starting
with ‘f’ or ‘F’, and b must specify the filename. The file’s first line must contain the total incidence count,
ninc, and the subsequent ninc lines each must contain four space-separated values: the three Euler angles
(ai, bi, ci) and the weight wi of each incidence. The weights are only used to compute rotational averages
for convenience, which is a common use-case.

In Mode = 1 (near-field calculations), if p is set to p=1 (default value, linear polarisaiton), the orientation
average of the local degree of optical chirality 〈C 〉 will be calculated for both RCP and LCP (noting that
linear polarisation would give 0 everywhere, when orientation-averaged). Since the calculation can be time-
consuming, setting p=+/-2 triggers the calculation for only that specific circular polarisation.

MultipoleCutoff n1 [ n2 [ t ] ]
Change the primary multipole cutoff (used for irregular offsetting when staging the linear system) from
the default value of 8 to n1. Another cutoff (used for regular offsetting when “contracting” the collective
T -matrix) can be set to n2 >= n1 (equality by default). A relative tolerance 10t (with t < 0 and t = −8
by default) is used in the test for convergence of cross-sections with respect to multipole order n = 1 . . . n2
(the summation can terminate below n2 if the relative tolerance is reached).

MultipoleSelections Ns
This keyword defines optional multipole selections for individual T -matrices, and it must be followed by Ns
lines with two fields: (i) a string range specifying the selection range; and (ii) a string type specifying the
selection type. For example:

MultipoleSelections 3
MM1:4_EM1:4_ME1:4_EE1:4 blocks
MM1:0_EM1:15_ME1:8_EE1:0 rows
EM1:1_ME1:1 columns

The range string must be of the form MM?:?_EM?:?_ME?:?_EE?:?, with the underscores separating
the ranges for each T -matrix block (e.g. MM or ME), and each range specified by a closed multipole interval
?:? (e.g. nlo:nhi = 1:4). No selection will be applied to blocks not included in range, so these “missing”
blocks will remain unmasked (left "as is" in the original T -matrix). On the other hand, a whole block can
be masked (zeroed out) by setting nlo > nhi (e.g. MM1:0 will set the whole MM block of the T -matrix to 0).

The type string must either start from “c”, “r”, or “b”, to indicated that the selection is either applied
to T -matrix columns, rows, or both (producing non-zero blocks). To clarify, if type(1:1) = “c”, then all
T -matrix columns corresponding to multipole orders n < nlo and n > nhi will be set to zero. For type(1:1)
= “b”, columns and rows for n < nlo and n > nhi will be set to zero.

Output control

OutputFormat F [ filename ]
If present, the output file format F can be switched between plain text (“TXT”, default) and HDF5 (“HDF5”).
With “HDF5”, the results will be stored in a file with name “results.h5”, or a user-specified filename (extension
.h5 added automatically).

Verbosity L
Keyword specifying integer-valued verbosity level L. Silent mode (L = 0 ) prints only error statements and
warnings. Physical quantities and some status indicators are printed at low verbosity (L = 1, default value),
with various timings and convergence indicators released at medium verbosity (L = 2 ). The highest level
(L = 3 ) is intended for debugging, releasing all print statements throughout the code.
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Near-field specific keywords

SpacePoints filename
or
SpacePoints xlo xhi nx ylo yhi ny zlo zhi nz
Read (from a file) or calculate (on a regular grid) the cartesian coordinates of points in space, where the
local field quantities are to be evaluated. The file’s first line should contain the total number of space-points,
and the subsequent lines must contain the x, y, and z coordinates of each point. A regular grid is specified
by a closed interval, e.g. [ xlo, xhi ], and the number of bins (nx ) the interval is to be divided into (thus
producing nx+1 grid points along that dimension).

MapQuantity [p] [E] [B] [C]
Specify the near-field quantities of interest, in Mode = 1. Integer argument p selects the raising power
applied to the field amplitude |E|p or |B|p. The default is p = 2 yielding the field intensity, p = 1 is for
the field amplitude |E|, p = 4 for the (approximate) Raman enhancement factor |E|4. Setting p = 0 will
output the real and imaginary parts of the (vector!) field components at each space-point.

The optional letters [E ] [B ] [C ] (default: E only) determine which of the near-field properties (electric
and magnetic fields and normalised value of local degree of optical chirality) will be calculated.

MapOaQuantity [E] [B] [C]
This is a keyword applicable in Mode = 1, to request the calculation of analytical orientation-averaged near-
field quantities 〈|E|2〉, 〈|B|2〉, or 〈C 〉. If this keyword is not included in the input file, by default none will
be calculated. Note that the Incidence keyword is used to select LCP and RCP (or both).

Polarimetry keywords

ScatteringAngles a b c / [ na nb nc ]
This keyword specifies the scattering angles in Mode = 3 (polarimetry), for the calculation of Stokes scat-
tering vectors at different scattering angles. The parameters have the same interpretation as for Incidence.

Multiple scattering angles can also be read from a file, in which case the argument a must be a string
starting with ‘f’ or ‘F’, and b must specify the filename. The file’s first line must contain the number of
scattering angles, nsca, and the subsequent nsca lines each must contain three space-separated values: the
three Euler angles (ai, bi, ci) for each scattering angle.

Advanced use / development

ScattererCentredCrossSections
Applicable in Scheme 1 and 2. Triggers Stout’s formulae for fixed and orientation-averaged cross-sections
based on scatterer-centred matrices; otherwise, the default behaviour is to collapse the coefficients to a
common origin. Note that this does not affect the calculation of fixed-orientation partial shell absorptions
for layered spheres, as they are calculated separately.

DumpCollectiveTmatrix [ filename ]
If the collective T -matrix is computed, this keyword will dump it to a file “tmat_col.txt” or a user-specified
filename. The file format is self-consistent, so that the generated T -matrix can be fed back into terms for
subsequent calculations.

DumpPrestagedA
If present, dumps a sparse-format representation of the full matrix comprising the individual T -matrices
after potential masking followed by rotation in their respective frame.
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DumpStagedA
If present, dumps a sparse-format representation of the full matrix comprising the individual T -matrices
along the diagonal blocks, and translation matrices in the off-diagonal blocks. The exact form of this matrix
is scheme-dependent.

DumpScaCoeff
If present, dumps the scattering coefficients into a file "Sca_coeff" for different incidence angles.

DumpIncCoeff
If present, dumps the incident coefficients in to a file "Inc_coeff" for different incidence angles.

DisableStoutBalancing
If present, switches off the balancing.

DisableRTR
Switches off the three-step translation of T -matrices, where a general translation is decomposed into a
rotation, z -axial translation, and then the inverse rotation. Instead, a one-step transformation is performed
by pre- or post-multiplying by a single matrix containing the general translation-addition coefficients.
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A.2. Organisation of the code

multiscat

routines for solving a multiple
scattering problem using the
superposition T-matrix formalism

mapNF, spectrumFF, solve, 
calcOAprops, calcCs, calcLDOC,
calcOaExtField, calcOaLDOC
calcOaStout, calcField,
calcCsStout, contractTmat,
calcStokesScaVec, 
readTmatFile, stageAmat
calcTIJStout, calcTIMackowski,
balanceMatJI, balanceVecJ,
diagnoseTmat, calcTrace,
applyRotTranzRotOnMat,
offsetTmat, parseInc

sphmsv

routines for calculating Stokes
vectors, phase and scattering
matrices

calcStokesIncVec
calcStokesPhaseMat
calcScatMat

termsProgram

main program: reads input file and
calls subroutines from multiscat to
calculate the requested outputs

readInputFile 
calcEpsilon
calcGridPoints

eps

wavelength-dependent dielectric
functions for built-in materials, and
interpolation for tabulated data


epsAu, epsAg, epsPt, epsPd,
epsAl, epsCr, epsSi, epsWater
epsDrude, interp1

miet

routines for calculating one-body

 T-matrices for homogeneous and
coated spheres


calcMieTMat
calcMieCoeffs,
calcCoatMieCoeffs
calcStoutCoeffs
calcMieIntCoeffs

linalg

wrappers to LAPACK's square-
matrix inversion routines and linear
solvers

solLinSys 
solLinSysV
solLinSysVX

swav
routines for calculating and
transforming scalar and vector
spherical waves. Depends on
toms644.f


calcVSWs, calcVTACs,
calcVTACsAxial, 
calcSSWs, calcSTACs,
calcSTACsAxial, 
calcJCoeffsPW, calcCoeffsPW,
calcRiccatiBessels,
calcSphBessels,
calcWignerBigD,
offsetCoeffsPW, calcVTxyz2rtp,
calcWignerd0andMore, nm2p,
calcVTrtp2xyz, 
calcAbsMat, calcLamMat

HDFfive

wrappers for writing HDF5 data


h5_crtgrp, h5_wrtvec2file
h5_wrt2file, h5_wrt_attr

Figure A.6: Organigram of the code structure in terms, organised in 8 modules. The termsProgram module is the general
entry point to the program, dispatching the calculations to multiscat. In turn, multiscat uses subroutines from miet, swav,
sphmsv, as well as linear algebra wrappers for lapack in linalg. The module eps provides definitions of common dielectric
functions and associated routines, while HDFfive provides wrappers for the HDF5 output data format.
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A.3. List of subroutines

In this section we briefly describe the main program, its different modules, subroutines, and functions.
The arguments of each subroutine or function are shown in parentheses with output arguments highlighted
in colour (note that some of them are both input and output arguments).

Main program termsProgram
termsProgram is the main module, with subroutines listed below; it reads the keywords and their corre-

sponding values in the input file and then calls different subroutines of multiscat module for the calculation
of requested outputs.

• readInputFile(inputfile)
Reads the input file containing specific keywords and the corresponding parameter values.

• errorParsingArguments(keyword)
If there is an error with the parameter values assigned to a keyword, this subroutine informs the user
and stops the program.

• calcEpsilon()
Updates the escat array storing the relative dielectric function(s) for each scatterer evaluated at the
specified wavelengths.
escat is an array for which the number of rows, columns and the 3rd dimension correspond to the
number of shells, scatterers, and wavelengths, respectively.

• calcGridPoints(points)
For a near-field calculation, this subroutine calculates the grid points based on the number of steps,
lower and upper values along the desired axes.
points(3, nGridPoints) is an in/output matrix storing the cartesian coordinates (x, y, z) of the grid
points.

• sentence2words(sentence, words, nwords_)
Reads each line of the input file as a sentence and splits it into space-separated words.
sentence, words are in/output character arrays, and nwords_ is an optional output integer containing
the number of words in the sentence.

• dumpNFs2TXTFile(filename, incidences, Epower, wavelen, work, Ef, p_label)
Exports electric and magnetic near fields into a plain text file. filename is the name of the text file.
incidences, Epower, wavelen, work are the incidence angles, selected power for mapping fields,
wavelength, and near-field quantities, respectively. Ef is a logical flag which selects either electric field
or magnetic field. p_label is an integer array indexing the position of each grid point, whether it is
inside the surrounding medium or a particle, and in which layer.

• dumpNFs2HDF5File(fname, groupname, filename, incidences, Epower, wavelen, work,
p_label) Exports electric and magnetic near fields into a HDF5 file. filename, fname, groupname are
the names of the HDF5 file, group, and subgroup name, respectively. incidences, Epower, wavelen,
work are the incidence angles, selected power for mapping fields, wavelength, and near-field quantities,
respectively. Ef is a logical flag which selects either electric field or magnetic field. p_label is an
integer array indexing the position of each grid point, whether it is inside the surrounding medium or
a particle, and in which layer.

• countLines(filename) result(nlines)
Counts lines in a text file.

32



multiscat module
This module consists of a mix of high-level, core, low-level and supplementary routines for solving a

multiple scattering problem using the T -matrix formalism. We list below the subroutines of the multiscat
module with a brief explanation. A list of common arguments and their brief description is at the end of
this section. The other arguments are explained after each subroutine.

• mapNF(ncut, wavelen, inc,ehost, geometry, scheme, tfiles_, escat_, nselect_, verb_,
noRTR_, dump_oaE2, dump_oaB2, field, Bfield, N_OC, orAvextEB_int, oa_ldoc, p_label)
Calculates the electric and magnetic near fields, and normalised optical chirality (C ) for a multiple
scattering problem, for different incidence directions and wavelengths, as well as the orientation-
averaged value of external 〈|E|2〉, 〈|B|2〉 and 〈C 〉. escat_, tfiles_, nselect_, verb_, noRTR_ are
optional inputs. dump_oaE2, dump_oaB2 are logical flags selecting whether the orientation-averaged
values 〈|E|2〉 and 〈|B|2〉 will be calculated, respectively.

• spectrumFF(ncut, wavelen, ehost, geometry, scheme, escat_, tfiles_, nselect_, noRTR_,
verb_, sig_oa_, sig_, sig_abs_, jsig_abs_oa)
Calculates cross-section spectra for (multiple) fixed orientations, partial absorptions, and orientation-
averaged cross-sections for a particle cluster. T -matrices for individual scatterers are either constructed
using Mie theory or read from an optional argument tfiles_. escat_, tfiles_, nselect_, verb_,
noRTR_ are optional inputs. jsig_abs_oa contains the orientation-averaged absorption cross-section of
each particle (valid for homogeneous spheres only, at present).

• solve(wavelen, ehost, geometry, nselect_, scheme_, verb_, noRTR_, TIJ, cJ_, cJint_,
csAbs_, ierr_ )
This routine is the crux of terms and solves a given multiple scattering problem by operating in
a specified scheme. TIJ is an in/output argument, cJ_, cJint_, csAbs_ are optional in/output
arguments, nselect_, scheme_, verb_, noRTR_ are optional inputs, and ierr_ is an optional
output. TIJ (lmax × nscat, lmax × nscat) as the input argument stores the T -matrix of nonspherical
particles as the diagonal blocks of the matrix, or dielectric values of different shells for spherical
particles as the diagonal elements of the matrix. nscat is the number of scatterers. This subroutine
updates and returns TIJ for the whole system as the output. cJ_(nscat x lmax, 2, nfi) as the
input argument contains details of the incident field and as a output argument contains incident plane
wave coefficients in the first column and scattering coefficients in the second column. nfi is the number
of incident angles. cJint_(nscat x lmax, 4, 2): contains the regular and irregular field coefficients
for each concentric region inside spherical scatterers. csAbs_(nscat,4): contains absorption cross
section inside each shell of each spherical scatterer.

• stageAmat(scatXYZ, scatMiet, rtr, right_, balance_, verb_, A, Tmats_)
Stages a pre-staged matrix A.
A (lmax x nscat, lmax x nscat): an in/output matrix, which must contain 1-body T -matrices in
the diagonal blocks on input and is a pre-staged matrix on the output; right_, balance_, verb_ are
optional inputs; Tmats_(lmax, lmax, nscat): an optional output matrix which contains the 1-body
T -matrix of each particle. balance_: a logical input argument which determines whether balancing is
applied or not.

• calcTIJStout(scatXYZ, scatMiet, rtr, TIJ)
Calculates the scatterer-centred T -matrix using the recursive scheme presented in Refs. 14 and 15.
The relevant equations are 33 and 35 in Ref. 14, and 20, 22 and 24 in 15. TIJ is an in/output argu-
ment. TIJ(lmax x nscat, lmax x nscat) as the input argument stores the T -matrix of nonspherical
particles as the diagonal blocks, or dielectric values of different shells for spherical particles as diagonal
blocks.

• calcTIMackowski(scatXYZ, scatMiet, rtr, TIJ)
Calculates the cluster’s T -matrix using Mackowski & Mishchenko’s formulation. TIJ is an in/output
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argument. TIJ(lmax x nscat, lmax x nscat) as the input argument stores the T -matrix of non-
spherical particles as the diagonal blocks, or dielectric values of different shells for spherical particles
as diagonal blocks. The output TIJ is the scatterer-centred T -matrices calculated using Mackowski &
Mishchenko’s scheme16–18.

• balanceMatJI(j, jregt, iregt, i, rev_, mnq_, Mat)
Performs balancing on a matrix (Mat) using two weights (indexed by j and i). Mat is here taken as
relating two vectors of VSWF coefficients, cj (centred at j) and ci (centred at i), such that cj = Mat ci.
Logical inputs jregt and iregt specify whether cj and ci are regular or not. Mat is an in/output
argument.

• balanceVecJ(j, jregt, rev_, Vec)
Performs balancing on a single vector (V) with a weight indexed by j. V corresponds here to the VSWF
coefficients of particle j. Vec is an unbalanced/ balanced vector as the in/output argument. j specifies
the scatterer.

• calcCsStout(scatXYZR, aJ, fJ, nmax2_, tol_, verb_, sig)
Calculates the extinction, scattering and absorption cross-sections from the incident and scattered coef-
ficients using the Stout formulae14. nmax2_, tol_, verb_ are optional inputs and sig is an in/output
matrix.

• calcCs(scatXYZR, inc, fJ, nmax2_, tol_, verb_, sig)
Calculates the extinction, scattering and absorption cross-sections from the incident and scattered
coefficients which are collapsed to the common origin. Depending on the dimension of the sig, each
cross-section is either just a total sum, or resolved into contributions from the multipole orders. inc: a
vector of incidence angles.

• calcOAprops(Tmat, rtol_, sigOA, verb_)
Calculates orientation-averaged cross-sections and circular dichroism (CD) by transforming the T -
matrix (Tmat) from "parity" (M–N) basis to "helicity" (L–R) basis, following Ref. 21. rtol_ is an
optional input, verb_ is an optional output, and sigOA is an in/output matrix containing orientation-
averaged cross-sections and CD in each column for n = 1, . . . , nmax.

• contractTmat(Tin, scatXYZR, rtr, mack_, Tout, verb_)
Combines the scatterer-centred T -matrices into a common origin; the output will be the collective
T -matrix (Tout). verb_ is an optional in/output, mack_ is an optional logical input to calculate the
collective T -matrix based on Mackowski & Mishchenko’s scheme16–18.

• diagnoseTmat(mode_, verb_, Tmat)
Determines the value of n ≤ nmax when Tr(<(Tcol)) converges to rtol_G := 10−ncut(3). If mode_ > 0,
also tests for the general symmetry, which applies to all T -matrices. (See equation 5.34 on p. 121 of
Mishchenko4).

• calcOaStout(TIJ, scatXYZ, verb_, sigOA, cdOA_, jAbsOA)
Calculates the orientation-averaged extinction and scattering cross-sections defined in equations 44 and
47 of Stout14. The absorption cross-section is then deduced as the difference. TIJ is the collective
T -matrix, sigOA(3) contains orientation-averaged extinction and scattering cross-sections, and cdOA_
is an optional output containing the corresponding values of CD. jAbsOA: contains the orientation-
averaged absorption cross-section for each particle.

• applyRotTranzRotOnMat(vtacs, bigdOP, rightOP, mat)
Performs the factorised translation of T -matrices when changing origin. Instead of a single multipli-
cation of a T -matrix by a dense matrix containing the general translation-addition coefficients, this
routine executes three multiplications by sparse matrices representing 1) a rotation, 2) a translation
along the z-axis; and 3) an inverse rotation. This is meant to be more efficient when high multipole
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orders are included.
vtacs(2x pmax,2 x pmax): axial VTACs with (m,n, q) indexing, bigdOP(pmax, pmax): optional in-
put for rotation, rightOP: an optional logical input argument for applying the product from the right.
mat: a non/translated matrix as the in/output.

• calcField(r, geometry, ipwVec, ipwE0, scaCJ, intCJreg_, intCJirr_, scatK_, verb_,
reE, imE, reB, imB, reE_sca,imE_sca, reB_sca,imB_sca, p_label)
Calculates the electric and magnetic near-field values at the determined grid points.
r: a matrix containing the coordinates of the grid points; ipwVec(3),ipwE0(3): contain the wavevector
and amplitude of the incident field, respectively; scaCJ: a vector containing scattering coefficients,
intCJreg_, intCJirr_: contain the regular and irregular parts of the incident field coefficients trans-
formed to the origin of each particle, respectively, scatK_ is the wavenumber in the host medium, and
reE, imE, reB, imB, reE_sca,imE_sca, reB_sca,imB_sca: contain real(re) and imaginary(im)
parts of the total electric (E) and magnetic (B) fields and the scattered field values at the grid points.

• dumpTmat(tmat, filename, lambda, eps_med, tol_, verb_)
Routine for dumping the collective T -matrix (tmat) to a file in the format:

s, s’, n, n’, m, m’, T_re, T_im

filename is an argument of type character corresponding to the name of the output file; lambda: the
value of wavelength; eps_med: the dielectric value of the host medium.

• dumpMatrix(mat, ofile, tolOP, verb_)
Outputs matrix mat to a desired optional tolerance (tolOP). ofile: the name of the output file.

• offsetTmat(off, miet, rtr, right, bigD_, useD_, balJI_, Tmat)
Offsets the supplied T -matrix Tmat by off, which can be either a square matrix of VTACs or a (note:
complex!) displacement vector kr(3) from which VTACs will be generated. Regular or irregular VTACs
will be generated depending on whether kr(3) is purely real or purely imaginary. If the logical input
miet is true, Tmat will be treated as diagonal. If the logical input rtr is true, then offsetting will
be based on factorised translation. If the logical input right is true, then offsetting will be done by
post-multiplying Tmat from the right. balJI_ triggers balancing of the VTACs and the T -matrices
individually, before offsetting, but currently works only without factorised translation.

• readTmatFile(filename, unit, wavelen, verb_, Tmat)
Reads a T -matrix from the input file (filename) and import it into the matrix Tmat. unit: an integer
indexing the name of the T -matrix file. wavelen is the value of the wavelength.

• parseInc(inc, verb_, inc_dirn, inc_ampl)
Calculates the amplitude and direction vector of the incident plane wave based on the input Euler
angles (α, β, γ). inc_dirn and inc_ampl are vectors containing the wavevector and amplitude of the
incident electric field in cartesian coordinates, respectively. inc is a vector consisting of polarisation
type and Euler angles of the incidence direction.

• calcStokesScaVec(sca_angles, inc2, ncut, wavelen, ehost, geometry, scheme, tfiles_,
escat_, nselect_, noRTR_, verb_, StokesPhaseMat, StokesScaVec, diff_sca)
Calculates the Stokes phase matrix (StokesPhaseMat), Stokes scattering vector (StokesScaVec), and
differential scattering cross-sections (diff_sca).
sca_angles is a matrix of desired scattering angles; if it is not specified in the input file, they are
taken equal to the incidence angles. inc2 is a matrix containing incidence angles.

• calcLDOC(Ef, Bf, verb_, N_OpC)
Calculates the normalised optical chirality (C ) relative to the optical chirality of circularly polarised
light. Ef, Bf, and N_OpC are matrices containing the electric and magnetic field, and C values at the
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grid points, respectively.

• calcOaExtField(r, geometry, TIJ, lambda, ehost, escat, p_label, verb_, orEB2)
Calculates the orientation average of the total external electric and magnetic field intensities. r is a
matrix containing the cartesian coordinates of the grid points. TIJ is the scatterer-centred T -matrix of
the cluster. orEB2 is a vector containing the value of orientation-averaged external electric and magnetic
field intensities at the grid points.

• calcOaLDOC(pol_type, r, geometry, TIJ, verb_, Or_OC)
Calculates the orientation average of normalised optical chirality 〈C 〉. pol_type is the polarisation
type, r is a matrix containing the cartesian coordinate of the grid points. TIJ is the scatterer-centred
T -matrix of the structure.

• calcTrace(TRANSA, TRANSB, A, B, tr)
Calculates the trace of a product of two matrices, op(A)*op(B). The input characters TRANSA and
TRANSB determine the operation op, following the convention of blas’ gemm. Specifically, op = ’N’
corresponds to op(A) = A (no operation), whereas op = ’C’ corresponds to op(A) = A†.

• RotMatX(ang) result(rotMat)
Calculates a rotation matrix along the x axis using input argument angle(ang).

• RotMatY(ang) result(rotMat)
Calculates a rotation matrix along the y axis using input argument angle(ang).

• RotMatZ(ang) result(rotMat)
Calculates a rotation matrix along the z axis using input argument angle(ang).

• rotZYZmat(angles) result(mat)
Calculates rotation matrix mat for ZY’Z’, using the Euler angles=(α, β, γ)

List of common arguments

• acs_int_: a matrix containing partial internal absorption inside each scatterer and for each shell.

• aJ(nscat× lmax), fJ(nscat× lmax): contains incident and scattering coefficients.

• Bfield: contains the real and imaginary parts of the magnetic near field at the specified grid points,
wavelengths, and incidence.

• ehost: a vector of dielectric permittivity of the host medium at specified wavelengths.

• escat_(nscat, 4, size(wavelen)): depending on the number of wavelengths, it is a 2D or 3D array
of dielectric values for each scatterer, for each shell and wavelength.

• field: contains the real and imaginary parts of the electric near field at the specified grid points,
wavelengths, and incidence.

• geometry: a matrix containing physical information of different scatterers such as centre, dimensions
and direction.

• ierr_: an integer value (0 or 1 or 2); 0 indicates solving was successful, 1 means there is an error in
processing arguments, and 2 means an error in prestaging, staging, or solving/inverting Ax = b.

• iregt: logical input, specifies whether vectors are regular or not.

• jregt: logical input, specifies whether vectors are regular or not.
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• mnq_: an optional logical argument which is false by default, but if true will change the indexing
convention from (q,n,m) to (m,n,q), which is used to make the z-axial VTACs block-diagonal. Note
that index q corresponds to s in this user guide.

• ncut: a vector in the form [n1, n2, tol], which contains the values corresponding to the keyword
"MultipoleCutoff". Default values: [8, 8,−8].

• nmax2_: an integer value equals to ncut(2).

• noRTR_: an optional input with logical value .true. or .false. for the keyword DisableRTR. Default:
.false..

• nselect_: an optional input matrix which includes information about multipole selection for different
scatterers.

• oa_ldoc (npts × 4 × nwavelen): contains the orientation averaged value of C at different grid points
and wavelengths.

• orAvextE_int(npts × nwavelen): contains the orientation averaged electric field intensity values at
different grid points and wavelengths.

• p_label: a matrix determining the position of each grid point, whether it is inside the surrounding
medium or particles, and in which layer.

• rev_: an optional logical input which is false by default; triggers the reverse of balancing – "unbalanc-
ing".

• right_: a logical input. According to (Eqs. 44, 45) there are two ways for obtaining the TIJ matrix.
This argument determines whether the product is taken from the left or from the right.

• rtr: a logical input that is the reverse of noRTR_.

• scatMiet(nscat): a logical vector with .true. and .false. values, determining whether a scatterer
is spherical or not.

• scatXYZ(3,nscat): a matrix containing the cartesian coordinates (in lab frame) of the particle’s centre.

• scatXYZR(4,nscat): a matrix containing the cartesian coordinates (in lab frame) and the radius of the
smallest circumscribed sphere of each particle.

• scheme, scheme_: an integer value specifying the selected scheme.

• sig_: a matrix containing cross-sections (Extinction, Scattering, Absorption) for different polarisa-
tion(s), wavelength(s), and incidence(s).

• sig_abs_(4× nscat× 4× nwavelen× nfi): a 5D array containing absorption cross-sections inside each
shell for each scatterer for 4 Jones vectors, different wavelengths and different incidence directions.

• sig_oa_(6×n×nwavelen): a matrix consisting of orientation-averaged cross-sections and CD at different
wavelengtha. The first column gives the values for nmax and other columns contain values for different
value of n = 1, . . . ,ncut(2).

• tfiles_: a matrix of character type, includes the T -matrix filename and filepath for non-spherical
scatterers.

• tol_, rtol_: a real value rtol_G = 10ncut(3).

• N_OC: contains C at the specified grid points, wavelengths, and incidence.

• verb_: an integer variable containing the verbosity value (∈ [0, 1, 2, 3]) (the default value is 1).

• wavelen: a vector of specified wavelength(s).
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miet module
This module contains routines for calculating one-body T -matrices (currently limited to spherical scat-

terers, using Mie theory).

• calcMieTMat(x, s, zeropad_, tmat)
Calculates the diagonal T -matrix of a spherical scatterer for a given size parameter x = kR, relative
refractive indices (s = kin/kout); zeropad_=nmax maximum value of the multipole index inferred from
tmat’s dimensions.

• calcMieCoeffs(x, s, gammas, deltas)
Calculates the Mie coefficients for a spherical scatterer as defined by equations H.46 and H.47 of Ref.
19. The coefficients are interpreted as magnetic and electric susceptibilities (Γn and ∆n, respectively)
of the scattered field. Note the relation to standard Mie coefficients4: an = −∆n and bn = −Γn.

• calcCoatMieCoeffs(x, s, gammas, deltas)
Calculates the Mie coefficients for a coated sphere based on the equations H.110 and H.113 of Ref. 19.

• calcStoutCoeffs(x, rri, nmax, Cn, Dn)
Calculates the Cn,Dn coefficients as defined by equation (50) in Stout14. These coefficients are used to
calculate absorption cross-sections. rri is the relative refractive index, nmax is the maximum value of
the multipole index.

• calcMieIntCoeffs(a, k, scaCoeffs, intCoeffsReg, intCoeffsIrr, csAbs)
Calculates the regular and irregular VSWF coefficients for the field inside each concentric region of a
(layered) Mie scatterer. The formulae are based on Eqs. H.117–H.123 of Ref. 19. a, k, and scaCoeffs
are vectors of the radius of the concentric interfaces, relative refractive index, and scattered field coeffi-
cients for the host medium, respectively. intCoeffsReg and intCoeffsIrr are matrices of regular and
irregular field coefficients for each concentric region inside the scatterers and csAbs contains the partial
absorptions calculated using equation (29) in Mackowski20.

swav module
This module contains routines for calculating and transforming scalar (SSWs) and vector spherical waves

(VSWFs). It depends on Amos (toms644.f) to calculate spherical Bessel and Hankel functions using recur-
rence. In order to limit redundancy, parameter definitions are renewed only where they are changed.

• calcVTACs(r0, k, regt, vtacs)
Calculates the irregular (if regt=.false.) or the regular (if regt=.true.) vector translation-addition
coefficients for a given kr0.
r0 is a relative position vector, k is the wavenumber, regt is a logical argument which determines the
type: regular or irregular, and vtacs(1:2*pmax,1:2*pmax) is the input/output array.

• calcSTACs(r0, k, pmax, regt, scoeff)
Calculates the scalar translation-addition coefficients.(αnu,mu;n,m or βnu,mu;n,m). The output corre-
sponds to the scalar translation-addition coefficients α(irregular, for regt=.false.) or β(regular, for
regt=.true.).
pmax is a maximal composite index and scoeff(0:pmax,0:pmax) is the coefficients matrix.

• calcVTACsAxial(r0, k, pmax, regt, flip, mqn_, vtacs)
Calculates the irregular (if regt=.false.) or the regular (if regt=.true.) vector translation-addition
coefficients for a given kr0, along the z-axis.
r0 is the z-axial displacement distance, flip is a logical argument, mqn_ is a logical argument for changing
from qnm to mqn indexing, and vtacs(1:2*pmax,1:2*pmax) is the matrix of coefficients.
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• calcSTACsAxial(r0, k, pmax, regt, flip, stacs)
Calculates the normalised scalar translation-addition coefficients along the z-axis for a given kr0.
r0 is a displacement distance and stacs(0:pmax,0:pmax) is the coefficients matrix corresponding to α
(irregular, for regt=.false.) or β.

• calcVSWs(r, k, pmax, regt, cart, waves, wavesB)
Calculates (at r) the normalised vector spherical waves, Mnm and Nnm for evaluation of electric and
magnetic fields
r(3) is the cartesian coordinate of a point in 3D; cart is a logical argument which triggers conversion
to cartesian coordinates; waves(2*pmax,3) contains elements (Mnm and Nnm) of the abstract column
vector defined in Eq. B1 of Ref. 14 and wavesB(2*pmax,3) is similar to waves, only swapping the
position of Mnm and Nnm and multiplying by −ik for calculation of the magnetic field.

• calcSSWs(xyz, k, pmax, regt, psi)
Calculates (at xyz) the scalar spherical waves ψnm.
xyz is the cartesian coordinates of a point in 3D; psi(0:pmax) contains elements of the spherical waves
ψnm as defined by equation 13a in Chew55.

• calcJCoeffsPW(ipwE0, kVec, xyz, ipwCoeffsJ)
Translates the supplied ipwCoeffs coefficients to different centres for an incident plane wave.
ipwE0(3) is the incident plane wave’s amplitude vector, kVec(3) is the incident wave vector,
xyz(3,nscat) is a matrix containing the centre of different scatterers, and ipwCoeffsJ(nscat× lmax)
is a vector containing the translated incident plane wave coefficients to the centre of different scatterers
(according to equation 38 of Ref. 14).

• calcCoeffsPW(ipwE0, ipwDirn, ipwCoeffs)
Calculates the coefficients for expressing an incident plane wave in terms of vector spherical wavesMnm

and Nnm.
ipwDirn(3) is the normalised direction vector of the incident plane wave and ipwCoeffs(2*pmax)
contains coefficients for expressing an incident plane wave in terms of vector spherical waves Mnm and
Nnm, up to a maximum nmax. Follow equations C.57-59 on p.377 of Ref. 4.

• offsetCoeffsPW(a, kVec, xyzr, aJ)
Translates the VSWF coefficients (a) of an incident plane wave (centred at the origin) to another origin.
a(lmax) contains coefficients for a regular VSWF expansion centred at the origin for an incident plane
wave, xyzr includes centres of different scatterers, and aJ contains scatterer centred coefficients.

• calcWignerBigD(angles, pmax, bigD)
Calculates the Wigner D-functions (Ds

m,n(α, β, γ)).
angles(3) includes (α, β, γ) in radians and bigD(pmax,pmax) contains Wigner D-coefficients.

• calcWignerLittled(theta, pmax, d)
Calculates the Wigner d-functions (dsm,n(θ)).
theta is angle in radians and d(0:pmax,0:pmax) are values for dsm,n in block diagonal matrix form.

• calcWignerd0andMore(x, pmax, d, pi, tau)
Calculates the Wigner d-functions for n = 0 and also computes the derivative functions for optional
outputs pi and tau.
x is cos(θ), d(0:pmax), pi(0:pmax), tau(0:pmax) contain values for dsm,0, πm,s, and τm,s respectively.

• calcRiccatiBessels(z, nmax, regt, f, df)
Calculates the Riccati-Bessel functions ψn (if regt=.true.) or ξn (regt=.false.), and their deriva-
tives, for n = 1, . . . , nmax.
z is a scalar complex argument, f(1:nmax) is a matrix containing Riccati-Bessel functions ψn(z) =
z ∗ jn(z) or ξn(z) = z ∗ hn(z) for n = 1, . . . , nmax, and df(1:nmax) are the corresponding derivatives of
f.
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• calcSphBessels(z, nmax, regt, bes)
A wrapper routine for computing spherical Bessel/Hankel functions of the first kind for a complex ar-
gument z.
bes(0:nmax) contain Bessel (Jn+1/2) or Hankel (Hn+1/2) function (of 1st kind) values for n =
0, . . . , nmax for a complex argument z.

• xyz2rtp(xyz, rtp, cth)
Transforms the cartesian coordinates (x,y,z) of a point in 3D space to spherical polar coordinates
(r, θ, φ)
xyz(3) is a vector of cartesian coordinates, rtp(3) is a vector of spherical polar coordinates, and cth
is cos(θ).

• rtp2xyz(rtp, xyz)
The inverse of xyz2rtp. Transforms the spherical polar coordinates (r, θ, φ) of a point in 3D space to
cartesian coordinates (x, y, z).

• calcVTrtp2xyz(rtp, transform)
Calculates the matrix of transformation from a vector in spherical coordinates to a vector in cartesian
coordinates at point (r, θ, φ) (in spherical polar coordinates).

• calcVTxyz2rtp(rtp, transform)
The inverse of calcVTrtp2xyz. Calculates the matrix of transformation from a vector in cartesian
coordinates to a vector in spherical coordinates at point (r, θ, φ) (in spherical polar coordinates).

• calcAbsMat(Xi, ro, mat)
Calculates the absorption matrix Γj = mat(lmax, lmax) for the input arguments Xi and ro (Eq. (49) of
Ref. 14). Γj is used in the evaluation of the orientation-averaged absorption cross-section inside each
particle.

• calcLamMat(Xi, ro, mat)
Calculates the "Lambda" matrix Λj = mat(lmax, lmax) for the input arguments Xi and ro (Eq. (53) of Ref.
14). Λj is used in the evaluation of the orientation-averaged internal electric field inside homogeneous
spheres.

• nm2p(n, m, l)
Calculates a generalised index l=n(n+1)+m, for a unique (n,m), (Vector spherical harmonics are spanned
by two indices: n and m, such that 0 ≤ n ≤ nmax and −n ≤ m ≤ n).
n,m,l are integers.

• p2nm(p, n, m)
Calculates unique (n,m) from a given composite index p.
p is a real value.

• nm2pv2(n, m, p)
Some recurrences are defined only form ≥ 0, in which case we shall use a second version of the composite
index pv2 = n(n+ 1)/2 +m.

• testPmax(name, pmax, nmax)
Tests pmax for commensurability, i.e. is pmax == nmax(nmax + 2) and nmax = mmax? If not, then the
program will be stopped.

40



sphmsv module
This module contains routines for calculating Stokes incident vector, Stokes phase matrix and scattering

matrix for an input T -matrix. The formulae are based on Mishchenko4.

• calcStokesIncVec(ehost_, ipwDirn_, ipwAmpl_, verb_, Stokes_Vec)
Calculates the Stokes incident vector Stokes_Vec.

• calcStokesPhaseMat(SMat, verb_, Z)
Calculates the Stokes phase matrix for the specified incident and scattered angles. SMat(2,2) and
Z(4,4) are the scattering and Stokes phase matrices which follow Eqs. (5.11-14) and (2.106-121) of
Ref. 4.

• calcScatMat(tmat, host_K, spwDirn_, ipwDirn_, verb_, SMat)
Calculates the scattering matrix using the T -matrix, for the specified incident and scattering angles.

linalg module
This module contains wrappers to drive LAPACK’s square-matrix inversion routines and linear solvers.

• invSqrMat(trans_, verb_ A)
Calculates inverse of a complex-valued square matrix A(n,n), using the ZGETRF and ZGETRI
routines in LAPACK. A is overwritten by inv(A) on the output. trans_ is an optional logical input,
in case .true. the routine considers transpose of A and finally returns the transpose of the inverted
matrix as the output. verb_: an optional input of the verbosity value.

• solLinSys(isol_, verb_, A, X)
Solves a complex-valued linear system of equations Ax = b, where A(n,n) is a square matrix, b(n) is a
known vector, and x(n) is the vector to be determined. Depending on the value isol_, calls solLinSysV
or solLinSysVX. Both A and X are overwritten on output.

• solLinSysV(verb_, A, X)
For solving a linear system, uses LAPACK’s "simple" driver ZGESV.

• solLinSysVX(verb_, A, X)
For solving a linear system, uses LAPACK’s "simple" driver ZGESVX.

eps module
This module contains wavelength-dependent dielectric functions epsXX(lambda) for various materials

including Au, Ag, Al, Cr, Pd, Pt, Si, and Water).

• interp1( x1, y1, x2, y2 )
Calculates the interpolated data y2 using the input values x1,y1 at the points x2.

• epsAu(wavelength) result(eps)
Returns the wavelength-dependent relative dielectric function of gold. This function uses the analytical
expression given in Eq. (E.2) of Ref. 19.

• epsAg(wavelength) result(eps)
Returns the wavelength-dependent relative dielectric function of silver. This function uses the analytical
expression given in Eq. (E.1) of Ref. 19.

• epsPt(wavelength) result(eps)
Returns the wavelength-dependent relative dielectric function of a Lorentz-Drude metal, with the pa-
rameters for Pt65.
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• epsPd(wavelength) result(eps)
Returns the wavelength-dependent relative dielectric function of a Lorentz-Drude metal, with the pa-
rameters for Pd65.

• epsSi(wavelength) result(eps)
Returns the wavelength-dependent relative dielectric function of Silicon in the range 206.6 nm to 1200.0
nm interpolated from66.

• epsAl(wavelength) result(eps)
Returns the wavelength-dependent relative dielectric function of Aluminum in the range 103.32 nm to
2755.2 nm67.

• epsCr(wavelength) result(eps)
Returns the wavelength-dependent relative dielectric function of Aluminum in the range 100.8 nm to
31 µm, from the tabulated data in Ref. 68 pages: 382-385.

• epsWater(wavelength) result(eps)
Returns the wavelength-dependent relative dielectric function of Water at temperature 20oC in the
range 200 nm to 3000 nm69.

• epsDrude(wavelength, eps_infty, lambda_p, mu_p) result(eps)
Returns the wavelength-dependent relative dielectric function of a Drude metal. The analytical expres-
sion is given in Eq. (3.2) of Ref. 19.

HDFfive module
This module contains subroutines for reading and writing data in HDF5 format.

• h5_crtgrp(filename_, main_grpname, subgrpsname)
This subroutine creates subgroups in an existing group.

• h5_wrtvec2file(filename_, groupname, dsetname, dset_data)
This subroutine writes vector data in a dataset in an existing group.

• h5_wrt2file(filename_, groupname, dsetname, dset_data)
This subroutine writes data in a dataset in an existing group.

• h5_wrt_attr(attribute, dataset_id)
This subroutine adds an attribute to an existing dataset, typically a brief explanation about the contents
of the dataset.
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