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Refined effective-medium model for the optical properties of nanoparticles
coated with anisotropic molecules
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This work aims to provide a simple yet complete effective dielectric function for an anisotropic layer of
polarizable molecules adsorbed on a metallic surface. This effective medium model considers the important
and nontrivial case of nonvacuum embedding media and accounts for orientation effects, coverage dependence
through dipole-dipole interactions, and image-dipole effects. To check the model’s validity, we focus in particular
on the experimentally relevant case of dyes adsorbed on metallic nanospheres. We can then use anisotropic
Mie theory, together with the effective dielectric function describing the molecular coating, to calculate their
optical properties. We show that this effective medium description is in very good agreement with more elaborate
and computationally intensive microscopic calculations based on coupled-dipole models. The effective medium
model therefore provides a simple means to investigate orientation effects and coverage dependence, including
in more complex systems such as dyes adsorbed on nonspherical or ensembles of nanoparticles. This model can
readily be used to further our theoretical understanding of dye-nanoparticle systems, for example in the context
of dye-plasmon resonance coupling or surface-enhanced Raman and fluorescence spectroscopy.
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I. INTRODUCTION

Interactions between surface plasmons in metallic nanopar-
ticles and electronic resonance in adsorbates are central
to many areas of research, including subwavelength ma-
nipulation (nanoantennas [1,2], or metamaterials [3,4]),
surface-enhanced spectroscopy (Raman and fluorescence)
[5–11], and plasmon-enhanced applications for solar cells
[12,13]. Many recent studies have investigated experimen-
tally and theoretically such interactions between the plasmon
resonance of metallic films/nanoparticles and the optical
resonance of dyes adsorbed on their surfaces [14–21],
with a recent surge of interest in the strong-coupling
regimes [22–24].

In these contexts, the optical properties of adsorbed molec-
ular (sub)monolayers on nanoparticles have been mostly
studied within classical electromagnetic theory. The most
common type of models [14,18–20,25–28] are effective
medium models (EMMs), where the discrete molecular layer
is replaced by a thin continuous shell with an effective dielec-
tric function [29–31]. The problem then reduces to solving
Maxwell’s equations for piecewise continuous media, which
can be done using, for example, Mie theory [for spherical
nanoparticles (NPs)] [19,20,26], Finite-Difference Time Do-
main (FDTD) modeling for more general shapes [23,24,32],
or approximations such as the quasistatic approximation for
spheroidal particles [14,26,27]. EMMs used to date have sev-
eral limitations. In many instances, the effective dielectric
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functions are phenomenological and not quantitative, lacking
a direct link to microscopic parameters. Local field effects,
i.e., the effects of the field created by one molecule on the
others, have seldom been considered, which restricts the va-
lidity to low surface coverage. Any anisotropy expected from
a preferential molecular orientation on the surface is also usu-
ally neglected. Despite these many limitations, these models
are still routinely used because of their relative simplicity.

The alternative approach and most refined model to date
consists of a microscopic approach where each molecule is
treated as a polarizable dipole and the self-consistent field cre-
ated by the mutual interaction of all molecules is calculated,
a method called coupled dipole model (CDM) [33]. The solu-
tion is mathematically similar to the commonly used discrete
dipole approximation [34,35]. The CDM was recently applied
to molecular dipoles arranged in a spherical shell geometry
to elucidate the effect of dye-dye interactions [36] on the
optical properties in a nonplanar arrangement. For molecules
adsorbed on a NP, it is possible to extend the CDM to include
the effect of the core NP, by solving Maxwell’s equations
for the interaction between each dipole and the nanoparti-
cle, an extension which we will refer to below as NP-CDM.
This approach was recently implemented for spherical NPs
using Mie theory to investigate the electromagnetic interac-
tions of dye molecules adsorbed onto a nanosphere [37]. It
can be used to study a rich array of interrelated parameters
that influence the optical properties: molecular orientation,
dye-dye interactions, self-reflected field or image-dipole ef-
fect, and spatial distribution of adsorbates. However, the main
shortcoming of the NP-CDM is the computing requirements,
even for the simple case of spheres where Mie theory pro-
vides a fast and efficient solution. Modeling a 60-nm-diameter
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nanosphere with a 1 nm−2 coverage of adsorbate requires
more than 104 polarizable dipoles. To give an order of mag-
nitude, computing a spectrum (100 wavelength points) may
then take from a few hours to a day on a high-end PC, which
prevents systematic multiparameter studies. NP-CDM is also
limited to spherical nanoparticles at this stage. It is worth
emphasizing in this context that the NP-CDM is different
from previous schemes where the response of the NP is ap-
proximated as dipolar. In this approximation, the solution is a
standard CDM problem and nonspherical NP or multiple NPs
can easily be implemented efficiently. The NP-CDM is much
more advanced as it accounts for the NP response exactly
(solving Maxwell’s equation for a dipole next to the NP).
This extra refinement is required when molecules are close
to the NP surface, as in most cases of interest in plasmon-
ics. NP-CDM is challenging even for spheres as it requires
including multipolar orders typically up to 500 [37]. It could,
in principle, be implemented for other shapes and multiple
particles, for example using the T-matrix framework, but
would likely run into numerical problems at high multipole
orders [38] and fundamental problems related to the Rayleigh
hypothesis [39].

The aim of this work is to develop and validate an im-
proved effective medium model with comparable predictive
power as the NP-CDM, but without the high computational
cost and complexity. This model is moreover applicable to
general nanoparticle shapes when combined with numeri-
cal Maxwell’s equations solvers. To achieve this goal, we
combine and extend a number of concepts that have been
previously developed in isolation into a complete EMM.
Effective dielectric functions for a two-dimensional (2D)
anisotropic medium have already been derived in the context
of 2D planar arrays of dipoles by Dignam and Moskovits
[40] and further developed by Bagchi et al. [41,42] to in-
clude image-dipole effects. We will show that the latter
improvement is indeed necessary to reproduce the NP-CDM
predictions. These previous models were applied only to
planar arrays adsorbed on planar films; we will here inves-
tigate their application to nanoparticles, where the anisotropic
layer wraps around a curved surface. Another crucial as-
pect we consider is the embedding medium surrounding the
molecules and particles; all previous works were carried out
for dipoles/molecules in vacuum. We here generalize the 2D
anisotropic effective dielectric function to an isotropic embed-
ding medium with permittivity εm �= 1, which is relevant to
many experimental conditions where particles are suspended
in water or other solvents. As we will show, this generaliza-
tion is not straightforward as it requires one to appropriately
include local field effects related to the solvent molecules. We
discuss our results in the special case of dyes adsorbed on
a metallic nanosphere, which can be directly compared with
the benchmark predictions from the NP-CDM [37]. For this,
we use the full solution of anisotropic Mie scattering by an
isotropic core/anisotropic shell system derived by Roth and
Dignam [43]. We show that in some circumstances, the EMM
with a single shell immediately adjacent to the core does
not adequately reproduce NP-CDM results and introduce a
two-layer model to overcome this discrepancy. This two-layer
model moreover lends itself to further simplification in the

FIG. 1. (a) Schematics of discrete polarizable dipoles adsorbed
onto a nanoparticle at a distance d from the surface. The elongated
ellipsoids represent a uniaxial polarizability tensor, here with ran-
dom orientation. (b) Corresponding effective medium model where
the dipoles are replaced by a continuous shell of thickness L and
dielectric function εs, possibly tensorial.

thin-shell approximation along the lines of previous work
[44].

II. PRELIMINARIES

A. Model system

We consider a monolayer or submonolayer coverage of
adsorbates on a nanoparticle, here a nanosphere of radius a, as
depicted in Fig. 1(a). The coverage or surface concentration is
characterized by the number of molecules per surface area, ρ.
They are assumed to be adsorbed at a fixed distance d from the
surface and the number of molecules is therefore N = 4π (a +
d )2ρ. This is a common assumption, which can be justified
for chemically adsorbed molecules where the adsorption ge-
ometry is well defined, or for physisorbed molecules in the
presence of a well-defined coating layer on the metal surface.
We assume that the optical response of the molecules is known
and described by a vacuum dipolar polarizability tensor α: the
microscopic electric field e at a molecule position induces a
dipole p = αe. Each dipole, including those comprising the
solvent, then creates a field, which adds to the incident field
and the field scattered by the nanoparticle to give the mi-
croscopic field at each molecule position. The exact solution
for these self-consistent interactions can be found within the
generalized coupled-dipole model (NP-CDM) approach in the
special case of a spherical nanoparticle [37].

To benchmark our EMM predictions against NP-CDM, we
choose to focus on the specific example of a silver sphere
of radius a = 14 nm, with a core dielectric function εc as
given in Ref. [6], and embedded in water with dielectric
function εm = (1.33)2. This sphere radius is large enough
to avoid strong curvature effects, and small enough to allow
for NP-CDM calculations to be carried out in a reasonable
time. The adsorbate is chosen to be a uniaxial dye with a
single Lorentzian resonance at 526 nm. Many dyes have a pre-
ferred axis associated with their electronic absorption (along
which the electrons are most delocalized, typically along the
aromatic rings). The assumption of uniaxial polarizability is
therefore often justified, especially close to the resonance.
Explicitly the dye polarizability tensor is therefore of the form
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(
0 0 0
0 0 0
0 0 αuni

) when written in the molecular axes with

αuni(λ) = α∞ + α1λ1

μ1

⎡
⎣ 1

1 − λ2
1

λ2 + i λ2
1

λμ1

− 1

⎤
⎦, (1)

where α∞ = 9.6 × 10−39 [SI], α1 = 5.76 × 10−38 [SI], λ1 =
526 nm, and μ1 = 104 nm. This is a simple Lorentz oscillator
model with parameters matching the experimentally measured
optical properties of the main absorption peak of rhodamine
6G [45]. The optical response of this dye/NP system is dom-
inated by the silver NP absorption and scattering, especially
at low dye concentrations. In order to identify more clearly
the effect of the dye layer, we will therefore consider the
differential absorption cross section δCabs, which we define
as the difference between the absorption cross section of
the full system (NP+dye) and that of the bare NP, obtained
in a separate simulation. For plotting purposes, this will be
normalized to the number of adsorbates, namely, δCabs/N ,
which can then be directly compared to the isolated adsorbate
absorption cross section, as done in Refs. [21,36,37].

B. Molecular orientation

In effective medium models, [30,31] one replaces the dis-
crete dipole layer by a homogeneous shell of thickness L
and effective dielectric tensor εs [Fig. 1(b)]. To derive εs
rigorously, further assumptions must be made on the adsorbate
orientations, for example random orientation as illustrated in
Fig. 1(a). In order to match the symmetry of the problem,
the effective dielectric tensor is usually taken as diagonal in
the spherical basis, with εn and εt its components along the
normal and tangent to the NP surface. Two cases particularly
relevant to experiments are when the molecular axis is perpen-
dicular (⊥) or tangential (‖) to the surface. The corresponding
polarizability tensor for perpendicular orientation is simply

α⊥
d =

⎛
⎝

0 0 0
0 0 0
0 0 αuni

⎞
⎠ (2)

in the local basis (x̂′, ŷ′, ẑ′) where ẑ′ denotes the normal to
the surface (for a sphere, this is the spherical basis up to
reordering, i.e., ẑ′ ≡ r̂). For tangential orientation, orientation
averaging is still necessary and for simplicity, we will assume
an effective polarizability tensor that is isotropic in the plane:

α
‖
d =

⎛
⎝

αuni/2 0 0
0 αuni/2 0
0 0 0

⎞
⎠. (3)

The effective dielectric tensor εs is expected to have the
same symmetry property as these polarizability tensors, if no
spatial ordering of the adsorbed species introduces additional
asymmetries. A square or a random lattice both satisfy this cri-
terion (note, however, that the square lattice is an idealization
as the adsorbates will rarely form a perfect crystal).

C. Mie theory

To predict optical properties using the EMM, we solve
the scattering problem for an anisotropic shell of dielectric

tensor εs surrounding an isotropic core (radius a and dielectric
function εc) embedded in a medium with εm. For this, we use
the general solution of Mie theory for an anisotropic shell
developed in Ref. [43]. The solution has many similarities
with Mie theory, with some complications associated with the
use of spherical Bessel functions of complex order (i.e., jw
and yw with w a complex number instead of an integer as in
standard Mie theory).

The derived Mie scattering coefficients are functions of
the relative indices of refraction, sc = √

εc/
√

εm and st =√
εt/

√
εm, the dielectric function for the normal direction, εn,

and the size parameters x = km(a + L) = kmb and y = kma,
where km = 2π

√
εm/λ. From them, the optical properties,

such as scattering, extinction, and absorption spectra can be
derived as in standard Mie theory. The isotropic Mie theory
solution for the core only is then subtracted to derive the
corresponding differential cross sections characterizing the
effect of the dye layer.

We have used a relatively small number (Nmax = 5) of
multipoles for all anisotropic Mie theory calculations. One
can check that the results are in fact almost converged when
including only Nmax = 1 (the dipole terms) in the cases we
studied. This is in stark contrast with NP-CDM calculations,
where dipole-sphere interactions typically require Nmax = 500
to properly account for image-dipole effects [37]. For the
small sphere size considered here, one could also use the elec-
trostatic solution as an approximate solution, but the accuracy
is not very good even at a radius of 14 nm [46], and in any
case Mie theory allows for straightforward generalization to
larger spheres.

III. EFFECTIVE MEDIUM MODELS FOR MOLECULAR
MONOLAYERS

A. Isotropic EMM

In many previous studies [14,18–20,25–28], εs is taken
isotropic, εs = εsI , and constructed empirically using one
or more Lorentz oscillators accounting for the molecular
resonance(s). This approach, however, loses the quantitative
connection between εs and the adsorbate concentration ρ. A
more rigorous approach is to express εs in terms of the mi-
croscopic properties, i.e., α. For randomly oriented molecules
distributed uniformly in vacuum, we simply have in the dilute
regime (small ρ) [29,47]

εs ≈ 1 + 3ᾱd , with ᾱd = cd
Tr(α)/3

ε0
, (4)

where Tr(α)/3 accounts for the orientation averaging. cd is
the adsorbate volumic concentration in the shell:

cd = 3N

4π (b3 − a3)
≈ ρ

L
, (5)

the latter approximation assuming L, d 
 a. We note that the
thickness of the effective medium shell, L, has not been speci-
fied and does not necessarily correspond to a physical quantity
such as the thickness of the monolayer or the distance d of
the adsorbate from the surface. In fact, although εs depends
on L, the predicted optical properties do not in the limit of
small L, as illustrated in Fig. 2(a). This can be understood in
simple terms as the shell absorption is in a first approximation
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FIG. 2. Shell-thickness (L) dependence of the differential ab-
sorption cross section for an isotropic EMM for (a) the dilute regime
(ρ = 0.01 nm−2) where εs is defined by Eq. (4), and (b) high cover-
age (ρ = 0.6 nm−2), using Eq. (6) instead. A strong L dependence is
observed in the latter case. The silver sphere radius is a = 14 nm.

proportional both to the shell volume, itself proportional to
L, and to Im(εs), which is proportional to 1/L from Eqs. (4)
and (5).

At increased coverage, the interactions between molecules
result in local field effects, which can be included using the
Clausius Mossotti [29,31] relation (also known as Lorentz-
Lorenz relation) and its inverse:

εs = 1 + 2ᾱd

1 − ᾱd
, ᾱd = εs − 1

εs + 2
. (6)

This introduces a nonlinear dependence of εs on ρ, but also on
L. The predictions then become strongly dependent on L [see,
for example, Fig. 1(b)]. In effect, reducing L increases the
effective concentration and the interaction between molecules
even if the coverage ρ is unchanged, which is unphysical. In
order to make predictions, L must therefore be fixed using
theoretical arguments, for example the approach proposed by
Dignam and Moskovits [40], which gives L = 0.935ρ−1/2.
We note that in the form presented above, this EMM does not
allow for an embedding medium with a nonunity refractive in-
dex like water, but this aspect can be addressed as in Ref. [21].

This isotropic EMM has been used in many occasions,
but fails to account for molecular orientation or image-dipole
effects, and misrepresents dipole-dipole interactions if L is
not chosen carefully. An anisotropic model is desirable as it
is well accepted that the adsorption orientation of molecules
adsorbed on metallic nanoparticles can significantly affect the
optical properties of the system, for example in the context
of surface selection rules in surface-enhanced Raman spec-
troscopy [6,48–50]. Image-dipole effects are also predicted to
play an important role for molecules close to a metal surface
[37].

B. Anisotropic EMM in vacuum

To overcome these shortcomings, we draw from previ-
ous studies of adsorbed monolayers on flat surfaces in the
context of ellipsometry [40,51,52] or differential reflectance
spectroscopy [41,42]. For a 2D array of isotropic polarizable
dipoles of polarizability α in vacuum, at a distance d from a
semi-infinite material with dielectric function εc, it was shown
that the effective dielectric function for in-plane excitation is

εxy = 1 +
cd α
ε0

1 − α
8πε0

ρ3/2(ξ0 + βξI )
, (7)

and for out-of-plane excitation:

1

εz
= 1 −

cd α
ε0

1 + α
4πε0

ρ3/2(ξ0 − βξI )
. (8)

cd is again the volumic dipole concentration in the layer, and
ξ0 is a lattice sum on the (normalized) molecule positions,
which has been calculated in the case of an infinite square
lattice [53]. The sum is slowly convergent but can be recast as
a fast converging series [52,54] to obtain its numerical value,
sometimes called the Topping constant:

ξ0 =
∞∑

n,k �=(0,0)

1

(n2 + k2)3/2
≈ 9.033 565. (9)

The term βξI in Eqs. (7) and (8) is related to the image-dipole
effect [41,42] and is only important for small distance d of
the dipole to the surface (typically less than 1 nm in cases of
interest). Explicitly, we have

β = εc − 1

εc + 1
(10)

and

ξI =
∞∑

n,k=−∞

8ρd2 − (n2 + k2)

[n2 + k2 + 4ρd2]5/2 . (11)

ξI is akin to a lattice sum like ξ0 but note that it depends
on d and ρ. It can be computed more efficiently through the
equivalent sum [42]

ξI = 16π2
∞∑

n=0

∞∑
k=1

√
n2 + k2 exp[−4πd

√
ρ
√

n2 + k2]. (12)

We note that this approach is similar in essence to the
microscopic CDM. Here we first consider static point dipoles
in an infinite square lattice, calculating their self-consistent
interaction to embed them into an effective macroscopic di-
electric function. In contrast the CDM maintains the explicit
pairwise retarded interaction between all the dipoles in the
final geometry of interest. For spherical arrangements, agree-
ment between the two methods presupposes that the effect
of the layer’s curvature on the dipole-dipole interactions is
negligible, which is expected to hold for core particles with
a sufficiently large radius of curvature.

C. Anisotropic EMM in a medium

Before applying and validating these expressions, we first
generalize them to the much more experimentally relevant
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case of εm �= 1, for example for molecules embedded in water.
Despite its importance, we could not find any generaliza-
tion in the literature, and in fact it does not appear to be
straightforward. In a medium, we now need to take into ac-
count the local field effects of the medium molecules onto
the adsorbate [6,55,56]. For the coverages considered here,
up to ∼1 nm−2, the solvent (e.g., water) molecules remain the
dominant species even in the adsorbed molecular layer. We
therefore choose to treat the embedding medium macroscop-
ically, i.e., as a continuum medium in which the polarizable
dipoles are embedded. A different approach may be needed
at very high dipole coverages (where water molecules may no
longer be dominant in the dipole layer) [29]. Within this mixed
microscopic/continuum approach, we can show that Eqs. (7)
and (8) generalize to

εxy = εm + L2
m

cd α
ε0

1 − α
8πε0

L2
m

εm
ρ3/2(ξ0 + βmξI )

, (13)

1

εz
= 1

εm
−

L2
m

ε2
m

cd α
ε0

1 + α
4πε0

L2
m

εm
ρ3/2(ξ0 − βmξI )

, (14)

where

βm = εc − εm

εc + εm
(15)

and

Lm = (εm + 2)/3 (16)

is the microscopic local field correction factor [6,55,56]. This
factor accounts for local field corrections due to the solvent
molecules, which are assumed to be the dominant species and
uniformly distributed in space. In this case, the microscopic
field at the molecule position, e, is related to the macroscopic
field E obtained from solving Maxwell’s equations by e =
LmE. By optical reciprocity, this scaling factor also applies to
the field created by a dipole embedded in the same medium,
hence the factors L2

m appearing in the expressions above. More
details on the derivations are given in Appendix A.

To validate the EMM against the microscopic CDM, we
consider, in particular, the two cases introduced earlier in
Fig. 1: radially oriented (⊥) and tangentially oriented with
in-plane isotropy (‖) molecules. To implement the anisotropic
EMM, we then set

ε⊥
n = εz, ε⊥

t = εm, α = αuni (17)

for the first case and

ε‖
n = εm, ε

‖
t = εxy, α = αuni/2 (18)

for the second. Although not our focus here, it is worth
pointing out that this anisotropic EMM is also relevant to
molecules with a fully isotropic response (or randomly ori-
ented molecules). The 2D arrangement breaks the symmetry
of the molecular response and an anisotropic dielectric func-
tion is still required:

εiso
n = εz, εiso

t = εxy, α = αuni/3. (19)

We will not consider intermediate orientations here, corre-
sponding, for example, to a molecule adsorbing with its main
axis at a fixed angle β to the surface normal, but it can, in

principle, also be modeled within the same EMM as follows.
Equations (2) and (3) can be generalized to

αd = cos2 βα⊥
d + sin2 βα

‖
d . (20)

In principle, this tensor also has off-diagonal terms, but they
do not have any influence in the derivation of the effective
medium model because in a planar arrangement, a dipole
along x (respectively, z) does not induce an electric field along
z (respectively, x) at the other dipole positions. This therefore
translates to an effective dielectric tensor given by

ε⊥
n = εz with α = (cos2 β )αuni,

ε⊥
t = εxy with α = (sin2 β )αuni/2.

Let us now consider planar and spherical dipole arrange-
ments in water (i.e., no metal surface or nanoparticle). The
anisotropic EMM results can then be directly compared to
CDM calculations, as summarized in Fig. 3. The EMM
problem is solved for a planar interface using a simple gener-
alization of Fresnel equations to such anisotropic media [57].
We consider for illustration the specific case of 45◦ incidence
with p polarization, as it presents electric field components
both perpendicular and parallel to the plane of dipoles. Other
cases result in the same conclusions. As shown in Figs. 3(a)–
3(c) the EMM predictions are then indistinguishable from
the analytic microscopic model for a 2D planar array of
molecules in water, which can be derived following Ref. [58]
as discussed in Appendix A. In the special case of isotropic
molecules [Fig. 3(c)], the anisotropic EMM works much bet-
ter than the full isotropic solution based on Clausius Mosotti
relations [Eq. (6)] generalized to εm �= 1, where molecules are
assumed to be arranged in a homogeneous three-dimensional
(3D) configuration (in a cubic or disordered lattice, as per the
standard derivations). We conclude that this anisotropic EMM
performs extremely well on flat surfaces. While this may seem
trivial, in that both models were derived by considering an
infinite lattice of dipoles, it is interesting to note that the Fres-
nel model of the effective medium layer considers retardation
effects very differently from the retardation in the lattice sum
of the microscopic CDM.

We then consider the model’s applicability to a spherical
shell of molecules embedded in water and solve the equivalent
EMM with radially anisotropic Mie theory. This is equivalent
to wrapping the 2D planar sheet around a sphere, as depicted
in Fig. 3(g). As long as the radius of the core particle is
large enough, the dipole-dipole interactions should be domi-
nated by near neighbors in a locally quasiplanar configuration
and the EMM predictions should be correct. As shown in
Figs. 3(d)–3(f), the EMM predictions are indeed very close
to the microscopic solution obtained from a coupled dipole
model [36]. At large coverage, there is a small discrepancy for
the parallel case [Fig. 3(f)], which becomes more prominent
for smaller sphere radius (not shown here) and is therefore
attributed to a small curvature effect. But overall it appears
that the 2D plane anisotropic effective dielectric functions can
be applied to spherical shells embedded in water.
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FIG. 3. (a)–(c) Anisotropic-EMM predictions for the absorption spectrum of an L = 1-nm-thick planar layer of perpendicular (a), in-plane
isotropic (b), or fully isotropic (c) dipoles in water compared to the analytic solutions of a 2D array of dipole given in Appendix A (dashed
lines). The agreement is excellent. The isotropic-EMM model is also shown as a dotted line in (c). For spherical arrangement of molecules, the
same anisotropic EMM is used, as shown schematically in (g). (d)–(f) The predictions for spherical shells in water are compared to microscopic
coupled-dipole models (dashed line) for perpendicular (d), in-plane (e), and isotropic (f) arrangements. The inner radius of the water sphere
is 14 nm. Different coverages ρ are considered in all cases. Equations (17)–(19) are used for the anisotropic EMM with d = 1 nm (but the
image-dipole effect is negligible and could also be ignored in this case as there is no metal).

IV. APPLICATION OF THE EFFECTIVE MEDIUM MODEL
TO SPHERICAL NANOPARTICLES

We now discuss the validity and applicability of the derived
anisotropic EMM/Mie theory predictions for dyes adsorbed
on a metallic nanoparticle by comparing them to those of NP-
CDM.

A. Effective shell thickness

We first study in Fig. 4 the effect of the effective medium
shell thickness L for dipoles at a distance d = 1 nm (large
enough to avoid image-dipole effects for the moment). An
intermediate coverage of ρ = 0.6 nm−2 is chosen to ensure
dye/dye interactions effects are non-negligible, which results
in a small blueshift (⊥ case) or redshift (‖ case) of the ab-
sorption, but the conclusions are independent of coverage. The
effective dielectric functions have a similar L dependence as
in the dilute isotropic case, (εs − εm) ∼ 1/L, so one would
expect that the results are not L dependent, at least for small
L. This is indeed the case when considering a spherical layer
of dye suspended in water [Figs. 4(a) and 4(d)]. However,
for dyes adsorbed on a silver sphere, a relatively strong L
dependence is observed even for small L [Figs. 4(b) and 4(e)].
This can be attributed to the large field intensity gradients
close to the surface of the nanosphere (see Appendix B).
The surface-averaged radial field intensity drops by 28% by
moving only 1 nm away from the surface. Because the absorp-
tion in the effective layer scales with the field intensity, the
average absorption over the full layer will decrease as the shell

becomes thicker, as observed in Figs. 4(b) and 4(e). The drop
of surface-averaged field intensity as a function of distance
is even more dramatic for the tangential component (62% at
1 nm), which explains the more pronounced L dependence for
parallel molecules [Fig. 4(e)].

For a microscopic submonolayer of molecules, the field
that matters is the field at the molecule positions (a distance d
from the surface). By choosing an effective medium thickness
of L = 2d , we should therefore obtain a good approximation
of the NP-DCM results. This is indeed the case as seen in
Figs. 4(b) and 4(e), although the agreement is not perfect in
the parallel case because the drop in field intensity is not linear
over this range (see Appendix B). To overcome this issue,
we propose instead a two-layer effective medium shell model
as shown schematically in the inset of Fig. 4(c). The core is
surrounded by a water (or air) layer of thickness d − L/2, i.e.,
the effective medium shell is centered at the dipole positions
(distance d from the surface) while remaining as thin as de-
sired (L small). The resulting EMM predictions are then in
perfect agreement with NP-CDM for small L [Figs. 4(c) and
4(f)], and this approach therefore removes any ambiguity in
the choice of L. Arguably, the one-layer EMM with L = 2d
was already pretty good, but one additional advantage of the
two-layer EMM is that one can choose L very small and use
the small shell thickness approximation to solve the problem.
As discussed in Ref. [44], this dramatically simplifies the
numerical computations, as Bessel functions of complex or-
ders are no longer necessary. To implement this approach, the
results of Ref. [44] must be extended to a two-layer system.
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FIG. 4. Shell-thickness (L) dependence of the differential absorption cross section for an anisotropic EMM of a spherical layer of
perpendicular (top) and parallel (bottom) adsorbates in water (a),(d) or around a silver sphere (b),(e). The latter case shows an undesirable
L dependence, which can be avoided using an improved two-layer configuration (c),(f), where the effective shell layer is separated from
the sphere surface by a distance d − L/2. In all cases, the core has radius a = 14 nm and a coverage of ρ = 0.6 nm−2 is used, but similar
conclusions are obtained at other coverages. The results are compared to CDM and NP-CDM predictions for dipoles at a distance d = 1 nm
from the water (fictitious) or silver core.

This simplification is rather technical and outside the scope of
this work so will be presented elsewhere.

B. Image-dipole effect

When a polarizable dipole is located close to a dielectric
or metallic surface/object, the electromagnetic field reflected
(or scattered) by the object can affect its optical properties
[6,59]. In a first approximation, for sufficiently small distance
d the surface may be assumed to be planar and the retar-
dation effects may be neglected, which results in a simple
electrostatic problem with an analytic solution provided by the
image-dipole method [6,47,60]. The main consequence of this
interaction with the reflected field results is a modification of
the dipole polarizability. For molecules excited in the visible
and adsorbed on silver, this results in an orientation-dependent
redshift of the dipole absorption for the smallest distances,
typically under 1 nm, with a very strong distance dependence.
This so-called image-dipole effect is rarely considered in stud-
ies of dye molecules on metals, but it has been shown to play
a major role at distances smaller than 1 nm [37]. Moreover,
for ensembles of dipoles, the reflected/scattered field will not
only affect the dipole but also its neighbors and all the other
dipoles. Such complex interactions cannot be modeled within
the simple electrostatic model, but are accounted for within
the NP-CDM [37]. The effective shell model we propose can
also account for these multiple interactions [41,42].

This is first demonstrated in Fig. 5 for low coverage (ρ =
0.01 nm−2) where the EMM results can be compared to the
NP-CDM for a single dipole. The EMM predicts the correct

FIG. 5. Comparison between the EMM model and NP-CDM
at low coverage ρ = 0.01 nm−2 for perpendicular (a) and parallel
(b) orientations, for varying dipole distance from the surface, d . We
here use the two-layer model with a small L = 0.2 nm.
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(a)

(b)

(c)

FIG. 6. Comparison between the two-layer EMM model and NP-
CDM at a dipole distance where image-dipole effects are important,
d = 0.5 nm, as a function of coverage for perpendicular (a) and
parallel (b) orientations, for varying dipole distance from the surface,
d . We use L = 0.1 nm and the thickness of the spacer water layer is
d − L/2. In (c) the parallel EMM model [same as in (b)] is instead
compared to NP-CDM for randomly oriented uniaxial dipoles.

redshift in absorption as a function of d for each orientation.
The parameter d is here even more important as it determines
the strength of the image-dipole-induced shifts, in addition
to the secondary effect of the field intensity dependence dis-
cussed earlier. The two-layer model again allows us to choose
L independently of d .

The effect of coverage is assessed in Fig. 6 for a fixed
d = 0.5 nm. This distance is small enough to ensure that
the image-dipole effects are not negligible, and we expect to
observe the additional effect of the dipole/dipole interactions,
including those mediated by the sphere [37]. It is therefore
the most complex case. Again the proposed EMM performs
very well: the agreement is extremely good for perpendicular
orientation [Fig. 6(a)]. For parallel orientation [Fig. 6(b)], the
EMM model predicts the correct absorption shift, but shows a

slight discrepancy in the intensity and width of the absorption
peak at the highest coverages. A similar effect was already
observed for spherical shells in water (Fig. 3) and attributed to
a small curvature effect, which would therefore become less
prominent for larger spheres. Finally, we compare in Fig. 6(c)
the EMM predictions to those of the NP-CDM for randomly
oriented in-plane dipoles. The discrepancy is larger in this
case. The EMM does not account for the random in-plane ori-
entation and instead replaces all dipoles by in-plane-isotropic
polarizable elements (represented by oblate spheroids in our
figures). Therefore, the information about the dipoles pointing
in different (random) directions is lost, since the interaction
between two uniaxial dipoles in random directions is not the
same as the interaction between two isotropic dipoles. This
point is further discussed and illustrated explicitly in Ap-
pendix C. The NP-CDM, which accounts for the orientation
of all individual dipoles, provides a more realistic description,
with the additional orientational disorder resulting, not unex-
pectedly, in a broadening of the absorption peak.

We note, however, that the optical response of molecules
on metal surfaces is typically dominated by the perpendicular
component, as evident in all our figures where the differ-
ential absorption spectra are much larger than for in-plane
orientation. Therefore, the small errors observed between the
EMM and the NP-CDM will in general have no effect for
intermediate orientations where even a small perpendicular
component would dominate.

V. CONCLUSION

We have introduced an effective medium model for molec-
ular monolayers on a metallic surface that accounts for (i)
nonvacuum embedding media, (ii) coverage dependence, (iii)
molecular orientation effects, and (iv) image-dipole effects
important at small separation from the surface. All these ef-
fects are relevant to typical experiments, for example dyes-on
nanoparticles. These effective dielectric functions were im-
plemented into anisotropic Mie theory and compared to more
elaborate predictions from a microscopic model to assess their
validity and applicability. Good agreement was evidenced,
which was further improved by considering a two-layer model
with an ultrathin effective medium shell separated from the
nanoparticle. This comparison was focused on the more com-
monly studied far-field properties, but we believe the EMM
could also prove useful for near-field properties, which will
be the subject of a follow-up study.

We believe that this anisotropic EMM will find application
in many areas exploiting the optical properties of dyes on
metallic nanoparticles, including molecular plasmonics (both
weak- and strong-coupling regimes) and surface-enhanced
spectroscopies, where the orientation, coverage, and distance
to the surface of the adsorbates can have large effects. This
work will, for example, facilitate the disentanglement of the
various mechanisms at play in strong-coupling experiments
from intrinsic shifts in electronic absorption, through dye-dye
interactions, to plasmon-dye interactions. This model could
also provide the basis for further theoretical studies of similar
systems with nonspherical nanoparticles and/or assemblies of
such particles, especially given that no NP-CDM implemen-
tation currently exists for these more complex systems.
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APPENDIX A: ANALYTIC RESULTS FOR A PLANAR 2D
LAYER OF DIPOLES

Reference [58] has derived analytic expressions for a 2D
planar layer of isotropic polarizable dipoles in vacuum. A
similar derivation can be carried out for the two types of
anisotropic polarizable dipoles studied in this work (Sec. II B).
The dipoles are arranged in a square array with areal density
ρ. The dipole plane is the xy plane and we consider incident
p-polarized light at an angle θ from the normal (z axis).
For perpendicular uniaxial dipoles with polarizability tensor
α = αẑ ⊗ ẑ, a derivation similar to Ref. [58] results in the
following absorption coefficient in vacuum (here given using
SI units):

A⊥
0 = k0ρ

ε0

sin2 θ

cos θ

Im(α)
∣∣1 + α

4πε0

[
ρ3/2ξ0 − 2iπk0ρ

sin2 θ
cos θ

]∣∣2 , (A1)

where k0 = 2π/λ. The second term in brackets is akin to
a radiative correction term [61]. For in-plane dipoles, either
uniaxial with random orientation or isotropic in-plane polar-
izabilities, i.e., α = α[x̂ ⊗ x̂ + ŷ ⊗ ŷ], we similarly have

A‖
0 = k0ρ

ε0
cos θ

Im(α)∣∣1 − α
4πε0

[ρ3/2ξ0/2 + 2iπk0ρ cos θ ]
∣∣2 . (A2)

For fully isotropic dipoles with α = αI , we simply have
Aiso

0 = A⊥
0 + A‖

0, which is equivalent to Eq. (68) in Ref. [58].
We can generalize these expressions to an embedding

medium with dielectric function εm �= 1. Firstly, we assume
that the polarizability refers to the microscopic polarizability
in vacuum, i.e., the induced microscopic dipole is proportional
to the microscopic field: p = αe. The microscopic field is
obtained from the macroscopic field by e = LmE where Lm

is defined in Eq. (16). By optical reciprocity, the macro-
scopic field created by this microscopic dipole is also modified
by a factor Lm [36,37,56]. In addition, from macroscopic
Maxwell’s equations [47], the field of a dipole embedded in
a continuous medium of dielectric function εm is expressed
in terms of the medium wave vector k = 2π

√
εm/λ instead

of k0 and has a prefactor 1/(4πε0εm) instead of 1/(4πε0).
Taking all these corrections into account and running through
the derivations, we obtain the generalized expressions as

A⊥ = kρL2
m

ε0εm

sin2 θ

cos θ

Im(α)
∣∣1 + αL2

m
4πε0εm

[
ρ3/2ξ0 − 2iπkρ sin2 θ

cos θ

]∣∣2 ,

(A3)

A‖ = kρL2
m

ε0εm
cos θ

Im(α)
∣∣1 − αL2

m
4πε0εm

[ρ3/2ξ0/2 + 2iπkρ cos θ ]
∣∣2 .

(A4)

The derivations of the effective medium dielectric function
(see, e.g., Refs. [40,42]) are very similar to those found in
Ref. [58], except that the radiative correction term is absent.
The arguments given above can therefore be used to general-
ize the effective medium dielectric function to an embedding
medium with εm. We then see from the above arguments that α
needs to be corrected by a factor L2

m/εm. Moreover, the relative
dielectric function of the embedding medium (which was 1)
needs to be replaced by εm. These modifications then result

FIG. 7. Surface-averaged field intensity enhancements (perpen-
dicular, left axis, and parallel, right axis, components) at a distance d
from a 14-nm-radius silver sphere in water. Note the different scale
for the two y axes.

in the proposed expressions for εxy and εz given in the text
[Eqs. (13) and (14)].

We note that the radiative correction [second term in the
brackets of Eqs. (A3) and (A4)] has only a small influence for
coverages up to ρ � 1 nm−1, but it is nevertheless necessary
to include it to obtain perfect agreement with the anisotropic
EMM predictions (Fig. 3). The EMM dielectric functions
[Eqs. (13) and (14)] resemble the expressions above, but in-
terestingly, do not include a radiative correction term. Yet, the
EMM predictions do agree with the radiatively corrected ex-
pressions above. In this case, retardation effects are accounted
for in the solution of Maxwell’s equations and do not need
to be included in the dielectric function, which only need to
account for local interactions.

Finally, we note that implicit in these derivations is the
fact that we treat water as a continuum medium in which the
dipoles are embedded. This is appropriate in the regime we
are interested in, but a different approach may be needed at
very high dipole coverages (where water molecules may no
longer be dominant in the dipole layer).

APPENDIX B: FIELD ENHANCEMENT AS A FUNCTION
OF DISTANCE FROM THE SPHERE

The absorption of a polarizable dipole is proportional to
the field intensity at the dipole position. As customary in
the context of surface-enhanced spectroscopies [6], we distin-
guish between the field intensity enhancement factor 〈M〉 :=
〈|E|2/|E0|2〉 for perpendicular M⊥ and parallel components
M‖. This can be calculated at different positions outside the
sphere and we compute the average enhancements 〈M〉 for
a uniform layer of dipoles at a distance d from the surface
of a 14-nm silver sphere. A standard implementation of Mie
theory is used [62]. The results are summarized in Fig. 7 at
the peak of the resonance for our model dye, λ = 526 nm.
They highlight the fast decrease of 〈M〉 with d especially for
the parallel component. The decrease is also less linear in the

085436-9



TANG, AUGUIÉ, AND LE RU PHYSICAL REVIEW B 103, 085436 (2021)

FIG. 8. Simulated absorption spectra for dipolar dimers with sep-
aration 0.9 nm. Two types of dipolar polarizabilities are compared:
plane-isotropic (red curve), or uniaxial with in-plane random orien-
tation (100 representative light-gray curves are shown). The relative
orientation of both dipole moments strongly affects their coupling;
the two extreme cases of head-to-tail and side-by-side configurations
are presented as dashed gray curves. The average spectrum of any
two dipoles randomly oriented in the plane is shown in blue. For
reference, the absorption spectrum of a single isolated dye is shown
by a black dashed line. All spectra are orientation averaged over all
directions of incidence and polarizations.

parallel case, so the average over 0 � d � 2 nm does not
correspond to the value at the midpoint d = 1 nm.

APPENDIX C: EFFECT OF RELATIVE DIPOLE
ORIENTATION

Figure 8 compares the absorption spectrum of a dimer
of two in-plane isotropic dipoles to the average spectrum
of two uniaxial dipoles with in-plane random orientation.
The two configurations are not equivalent, even after aver-
aging (blue vs red curves). This discrepancy occurs because
dipole-dipole interactions have a nontrivial dependence on the
relative position and orientation of the two dipoles; between
the extreme cases of head-to-tail dipoles, leading to a redshift
of the absorption spectrum, and side-by-side leading to a
blueshift, and a cross configuration (two orthogonal dipoles,
leading to no shift of the absorption peak), dipoles in arbitrary
orientations will span the full spectral range between these
extremes. In contrast the in-plane-isotropic configuration sees
the two dipoles always parallel to each other (ignoring minor
retardation effects) and with a polarizability reduced by half.
This results in a reduction in the range of spectral shifts. A
similar conclusion holds for the 3D case, contrasting a dimer
with fully isotropic polarizabilities and a dimer with randomly
oriented uniaxial dipoles. Here again the random dimer’s re-
sponse does not reduce to that of a dimer of isotropic dipoles,
and the average absorption spectrum is broader.
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