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Thin-shell approximation of Mie theory for a thin anisotropic layer spaced away from a spherical
core: Application to dye-coated nanostructures
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We here develop a thin-shell approximation of the Mie scattering problem for a spherical multilayer structure
consisting of central core, a spacer layer, and a thin layer with radially anisotropic dielectric function. This
thin layer can, for example, represent a uniform layer of adsorbed dyes at a fixed distance from a spherical
nanoparticle, with an effective anisotropic dielectric tensor to account for dye-orientation effects. This geometry
with the spacer layer was recently shown to be necessary to precisely account for all electromagnetic effects
in such systems [C. Tang, B. Auguié, and E. C. Le Ru, Phys. Rev. B 103, 085436 (2021)]. The Mie theory
solution involves Bessel functions of complex order, which are not commonly available in many numerical
calculations. We show that this hurdle is overcome in the thin-shell approximation, where the solution is of
similar complexity to that of isotropic Mie theory with only spherical Bessel functions of integer order. We
also apply this approximation to the calculation of the optical absorption in each individual layer. Using the
dye-on-metal-nanoparticle system as illustration, we show that the thin-shell predictions agree extremely well
with the full solution for experimentally relevant parameters, and can therefore be used instead. This speeds up
the numerical implementation and will simplify further analytical developments.

DOI: 10.1103/PhysRevA.104.033502

I. INTRODUCTION

Mie theory provides the full solution of the electromagnetic
scattering problem by a sphere [1,2] or a spherical multilayer
[3,4]. Because it is analytic, and easily implemented numer-
ically, it is one of the most used tools to predict the optical
properties of particles, nanoparticles (NPs), and NPs coated
with molecules. These calculations are particularly relevant to
the field of plasmonics, which studies and exploits the unique
interaction of light with noble metals [5,6], with diverse appli-
cations in, for example, sensing [7–10] or surface-enhanced
Raman and fluorescence spectroscopy [11]. Much experimen-
tal and theoretical work has recently focused on understanding
the interaction between plasmon and dye resonances in dye-
on-metal-NP systems [12–19], with particular interest in the
strong-coupling regime [20–22]. Many of these phenomena
are first modeled for spheres using Mie theory. Shape effects
can then be investigated separately using more elaborate tools
such as finite-element modeling [23,24].

Although less common, it is also possible to generalize
Mie theory to radially anisotropic media, where the dielec-
tric function of the material is different for the radial and
tangential directions. This has been used to study the influ-
ence of anisotropy on the plasmon resonances of metallic
nanoparticles [25,26]. It is also particularly relevant to dye-
on-NPs systems, where the preferred adsorbed dye orientation
often result in a strongly anisotropic optical response [27,28],
which cannot be modeled with isotropic Mie theory. A general
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theory of anisotropic Mie scattering for an optically isotropic
particle surrounded by an anisotropic shell was given by Roth
and Dignam [29], who also derived an effective dielectric
tensor to account for the anisotropic response resulting from a
layer of adsorbed dyes with fixed orientation. This model was
further refined to account for image dipole effects for dyes
adsorbed on a metallic nanoparticle at a fixed distance d from
the surface [30,31]. This was recently further developed and
extended to the more experimentally relevant case of dyes-
on-NP embedded in a dielectric medium such as water [32].
Combined with anisotropic Mie theory, the resulting one-layer
effective-medium model (EMM), see Fig. 1(a), was compared
to the full microscopic solution obtained from generalized
coupled-dipole calculations [33,34]. By choosing the shell
thickness as ls = 2d , a reasonable agreement was obtained,
but some discrepancies remained, in particular, for a tangen-
tial orientation of dyes [32]. To overcome these issues, the
authors of Ref. [32] proposed an improved two-layer EMM
where a spacer layer of thickness d − ls/2 was introduced
between the core and the anisotropic dye layer, see Fig. 1(b).
The main advantage of this two-layer EMM is that the dye
shell thickness ls can be defined independently of the distance
d from the dye molecules to the NP surface. The first can then
be chosen to be very small to ensure the results do not depend
on its choice. As shown in Ref. [32], the two-layer EMM then
results in much improved agreement with the microscopic
solution.

Another benefit of a small ls in the two-layer EMM is that
the solution should then be accurately approximated by that in
the limit of a vanishing ls, which we call the thin-anisotropic-
shell approximation (TASA). This approach was first used by
Lange and Aragon [35] in the special case of bubbles (where
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FIG. 1. Schematic of the scatterer structure (a) previously stud-
ied one-layer core–shell structure and (b) the improved two-layer
core-spacer-shell model.

the spherical core is the same as the embedding medium), and
was generalized to an arbitrary isotropic-core–anisotropic-
shell system [36]. The latter can, for example, be applied to
the one-layer EMM but only if the shell thickness ls = 2d
is small enough [36]. The main advantage of these TASA
solutions is that they no longer include the complex-order
Bessel functions that arise in the full solutions of anisotropic
systems [29]. These complex-order Bessel functions com-
plicate numerical implementations and dramatically increase
computation times. In contrast, the TASA solutions require
only the same integer-order spherical Bessel functions as in
standard Mie theory.

In this work, we derive the TASA solution of the two-
layer (core-space-anisotropic shell) problem. As for previous
TASA solutions, only integer-order spherical Bessel functions
are needed in this approximation. The validity of this new
TASA solution is demonstrated by comparing its predictions
to the full solutions. This is illustrated in the model case of
silver NPs coated with radially or tangentially oriented dye
molecules. The EMM of Ref. [32] is used to describe the
anisotropic response of the dye layer. The shell thickness
in the two-layer EMM can be chosen arbitrarily small, in
contrast to previous TASA solutions where it was imposed
by physical parameters (for example, ls = 2d in the one-layer
EMM). At very small ls, excellent agreement is demonstrated
between the TASA and the full anisotropic Mie solution. We
conclude that the simpler and more efficient TASA solution
can be routinely used in such calculations. Finally, we also
extend these results to predict the optical absorption in the
anisotropic dye layer. Previous studies of anisotropic Mie
theory have all focused on the optical properties of the entire
system (core + shell), but absorption in the shell only (or
core only) may be more relevant to some applications, for
example, plasmonic-enhanced photobleaching [37] or photo-
induced catalysis [38]. For an isotropic system, the internal
absorption cross section in each spherical layer was derived
by Mackowski et al. [39]. We here generalize these results
to include anisotropic layers and explain how these can be
computed in the TASA solution.

II. MIE THEORY FOR A
CORE-SPACER-ANISOTROPIC-SHELL SYSTEM

We consider the light scattering problem by a core-spacer-
shell structure, as depicted in Fig. 1(b). The core of radius a

is surrounded by a thin spherical shell of thickness ls = c − b,
and embedded in a nonabsorbing medium (typically air or wa-
ter) with dielectric constant εm. The core and the anisotropic
shell are separated by a spacer medium with dielectric con-
stant εm and thickness b − a. The dielectric function of the
core is denoted as εc and assumed to be isotropic. The
anisotropic spherical shell is characterized by a dielectric ten-
sor εs, which is assumed diagonal in the spherical basis with
εn and εt as its normal (radial) and tangential components,
respectively. Explicitly, in the spherical basis, (r̂, θ̂ , φ̂):

εs =
⎛
⎝εn 0 0

0 εt 0
0 0 εt

⎞
⎠. (1)

The solution of the problem can be derived similarly to
Ref. [29], with an extra boundary condition for the additional
layer. We here only summarize the final results, more details
are provided in Appendix A. The extinction, absorption, and
scattering cross sections take the same form as in Mie theory:

Cext = 2π

k2
m

∞∑
n=1

(2n + 1)Re(�n + �n), (2)

Csca = 2π

k2
m

∞∑
n=1

(2n + 1)(|�n|2 + |�n|2), (3)

Cabs = Cext − Csca, (4)

where km = 2π
√

εm/λ. �n and �n are the Mie scattering co-
efficients, which are functions of the size parameters x = kmc,
y = kmb, and z = kma, of the relative indices of refraction
sc = √

εc/
√

εm and st = √
εt/

√
εm, and of the ratio εt/εn.

The Mie scattering coefficients are derived as

�n = − N1n

D1n
, (5)

�n = − N2n

D2n
, (6)

with

N1n =[ψψ]m,s
n,x

(
[χψ]m,s

n,y + �(1)
n [χχ ]m,s

n,y

)
− [χψ]m,s

n,x

(
[ψψ]m,s

n,y + �(1)
n [ψχ ]m,s

n,y

)
, (7)

D1n =[ψξ ]m,s
n,x

(
[χψ]m,s

n,y + �(1)
n [χχ ]m,s

n,y

)
− [χξ ]m,s

n,x

(
[ψψ]m,s

n,y + �(1)
n [ψχ ]m,s

n,y

)
, (8)

N2n =[ψψ]e,s
n,x

(
[χψ]e,s

n,y + �(1)
n [χχ ]e,s

n,y

)
− [χψ]e,s

n,x

(
[ψψ]e,s

n,y + �(1)
n [ψχ ]e,s

n,y

)
, (9)

D2n =[ψξ ]e,s
n,x

(
[χψ]e,s

n,y + �(1)
n [χχ ]e,s

n,y

)
− [χξ ]e,s

n,x

(
[ψψ]e,s

n,y + �(1)
n [ψχ ]e,s

n,y

)
, (10)

where

�(1)
n = − scψn(z)ψ ′

n(scz) − ψn(z)ψ ′
n(scz)

scχn(z)ψ ′
n(scz) − χn(z)ψ ′

n(scz)
, (11)

�(1)
n = − scψ

′
n(z)ψn(scz) − ψ ′

n(z)ψn(scz)

scχ ′
n(z)ψn(scz) − χ ′

n(z)ψn(scz)
, (12)
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and

[�]m,s
n,x = st�

′
n(stx)n(x) − �n(stx)′

n(x),

[�]e,s
n,x = st�̃n(stx)′

n(x) − �̃′
n(stx)n(x),

with � = ψ or χ, and  = ψ, χ, or ξ . (13)

ψn and χn denote the regular and irregular Riccati-Bessel
functions of integer order n and ξn = ψn + iχn. The (′) refers
to their first derivatives. The functions ψ̃n and χ̃n are Riccati-
Bessel functions of complex order, which are defined as [36]

ψ̃n(x) ≡
√

πx/2 Jw(n)+1/2(x), (14)

χ̃n(x) ≡
√

πx/2 Yw(n)+1/2(x), (15)

ξ̃n(x) ≡ ψ̃n(x) + iχ̃n(x), (16)

where

w(n) =
√

1

4
+ εt

εn
(n2 + n) − 1

2
. (17)

Note that w(n) is, in general, complex and wavelength-
dependent. In our numerical implementation, these functions
are expressed in terms of a power series as (see Ref. [40],
Secs. 9.1.2 and 9.1.10)

Jν (x) =
( x

2

)ν
∞∑

k=0

(−1)k[x/2]2k

�(k + 1)�(ν + k + 1)
, (18)

Yν (x) = Jν (x) cos(πν) − Jν (x)

sin(πν)
. (19)

We calculate the complex � functions in MATLAB using Lanc-
zos series approximation [41]. In all our Mie calculations, we
used a relatively small number of multipoles, Nmax = 5, to
truncate the Mie series; in fact, the results are almost con-
verged even when using only Nmax = 1.

III. THIN ANISOTROPIC SHELL APPROXIMATION

In the derivations of the thin anisotropic shell approxi-
mation, results from Refs. [35,36] can be used as a guide
to derive the TASA for this system. Briefly, we define δ =
x − y = kmls and seek the solution in the limit δ � x, y. For
this, we perform a Taylor expansion to first order in δ of all the
expressions used in the solution, which, after simplification,
leads to

�n(y, δ) = − N1n

D1n
− δ

(
N ′

1nD1n − N1nD′
1n

(D1n)2

)
, (20)

�n(y, δ) = − N2n

D2n
− δ

(
N ′

2nD2n − N2nD′
2n

(D2n)2

)
. (21)

All values of N and D above are evaluated at x = y, explicitly:

N1n|x=y =st�
(1)
n ,

D1n|x=y =st
(
�(1)

n − i
)
,

N ′
1n|x=y =st

(
s2

t − 1
)
ψn(y)

[
ψn(y) + �(1)

n χn(y)
]
,

D′
1n|x=y =st

(
s2

t − 1
)
ξn(y)

[
ψn(y) + �(1)

n χn(y)
]
. (22)

N2n|x=y =st�
(1)
n ,

D2n|x=y =st
(
�(1)

n − i
)
,

N ′
2n|x=y = stn(n + 1)

y2

(
εt

εns2
t

− 1

)
ψn(y)

[
ψn(y) + �(1)

n χn(y)
]
,

+ st
(
1 − s2

t

)
ψ ′

n(y)
[
ψ ′

n(y) + �(1)
n χ ′

n(y)
]
.

D′
2n|x=y = stn(n + 1)

y2

(
εt

εns2
t

− 1

)
ξn(y)

[
ψn(y) + �(1)

n χn(y)
]

+ st
(
1 − s2

t

)
ξ ′

n(y)
[
ψ ′

n(y) + �(1)
n χ ′

n(y)
]
. (23)

More detailed derivations are given in Appendix B. Bessel
functions of complex orders are no longer required in this ap-
proximation. We note that for δ = 0 (i.e., zero shell thickness
of the dye layer), the expressions of �n(δ) and �n(δ) simplify
to those of standard Mie theory for the core only, as expected.
Also, for b = a, the expressions reduce to those previously
obtained in the absence of the spacer layer, Eqs. (13) to (16) in
Ref. [36]. Furthermore, if we set εc = εm (sc = 1), then these
expressions reduce to Eqs. (3.16) to (3.17) in Ref. [35].

It is also worth noting that the TASA solution above can
also be used for a composite core (for example, a core com-
posed of a metal NP covered with a dielectric layer). The
only change is that �(1)

n and �(1)
n [Eqs. (11) and (12)] must

be replaced by the Mie susceptibility of the composite core,
but the TASA solution remains unchanged.

IV. VALIDATION AND APPLICATION

We now illustrate the range of validity and usefulness of
this TASA solution by focusing on a specific system: a sil-
ver nanosphere of radius a = 30 nm (with dielectric function
taken from Ref. [11]) coated with a monolayer of dye at a
fixed distance d from the surface. The embedding medium
is assumed to be water with εm = 1.7689. In Ref. [32], the
two-layer effective medium model (EMM) was shown to give
the best agreement with the microscopic solution. In this case,
the spacer thickness is set to b − a = d − ls/2, and ls can be
chosen as small as desired; we here use ls = a/100 = 0.3 nm.
We choose a dye coverage of ρ = 0.01 nm2 and a distance
to the surface d = 1 nm, but similar conclusions are obtained
at other values of ρ and d . Following Ref. [32], the dye uni-
axial polarizability is described by a simple Lorentz oscillator
model with parameters matching the experimentally measured
optical properties of the main absorption peak of rhodamine
6G at 526 nm [42]

αuni(λ) = α∞ + α1λ1

μ1

⎡
⎣ 1

1 − λ2
1

λ2 − i λ2
1

(λμ1 )

− 1

⎤
⎦, (24)

where α∞ = 9.6 × 10−39 A2 s4 kg−1, α1 = 5.76 ×
10−38 A2 s4 kg−1, λ1 = 526 nm, and μ1 = 104 nm. From
this, we can deduce the effective anisotropic dielectric tensor
of the dye layer for the two important dye orientations: radial
(⊥) or tangential (‖), see Ref. [32] for details.

We compare in Fig. 2 the results of the full anisotropic Mie
theory and the TASA solutions for a dye-coated silver sphere
for these two orientations. The absorption, scattering, and
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FIG. 2. Mie scattering predictions for a silver sphere of radius a = 30 nm in water, coated with a ls = 0.3 nm dye layer with an effective
dielectric tensor from Ref. [32] assuming a dye coverage ρ = 0.01 nm2 and distance from surface d = 1 nm. We compare the results of the full
anisotropic Mie theory for a two-layer EMM with our TASA for two representative cases: radially oriented (⊥) and tangentially oriented with
in-plane isotropy (‖) molecules. The panels show the differential cross sections for (a) absorption, (b) scattering, and (c) extinction, and (d)–(f)
the corresponding absolute errors between the TASA and exact solutions. The last panels also show the errors for a smaller shell thickness
ls = 0.1 nm (dotted lines).

extinction cross sections of the whole system (core + spacer
+ shell) denoted as Cabs,Csca, and Cext, respectively, are not
shown as they are strongly dominated by the response of the
silver sphere and do not clearly reveal the subtle effects of the
shell on the combined system. We therefore focus on the dif-
ferential cross sections (denoted as δCabs, etc.) instead, which
is the difference between the whole system and the core-only
cross sections, i.e., δCabs = Cabs − CBare

abs , for example. The
results from the full and TASA solutions are almost indistin-
guishable in all cases, with errors of the order of a few percent.
The errors can be further reduced if desired by decreasing
ls, see Fig. 2. This extremely good agreement (much better
than for the one-layer case [36]) can be attributed to the very
small shell-thickness ls. Moreover, ls can be chosen arbitrarily
small to improve accuracy, in contrast to the one-layer TASA
where the shell-thickness is imposed by the distance of the
dyes from the surface (ls = 2d). More extensive comparisons
were carried out (not shown here) and the results confirmed
the validity of the TASA with similar errors for shell-thickness
ls of the order of ∼a/100.

V. ABSORPTION CROSS SECTIONS

Equations (2) to (4) allow us to compute the differential
extinction, scattering, and absorption cross sections of the
whole system (core and shells). However, this differential ab-
sorption cross sections does not necessarily match the actual

optical absorption in the shell, as the presence of the shell
also modifies the electric fields within the core particle and
vice versa. Actual absorption in the shell is more relevant
to, for example, plasmonic-enhanced photobleaching [37] or
photocatalysis [38], where the absorption in a specific region
in the system becomes important. To address this issue, we
here focus on deriving the internal absorption cross sections
in individual layers of a spherical multilayer, with potentially
anisotropic response in some layers. We then show that the
TASA again provides a simplified, yet accurate, solution in
this context.

Mackowski et al. [39] derived the internal absorption cross
sections for isotropic stratified spheres, which we here gener-
alize to account for radially anisotropic dielectric functions.
As for earlier solutions, complex-order Bessel functions ψ̃n

and χ̃n must be used, but apart from this change, the expres-
sions are similar to the isotropic case. The electric field in the
jth layer is

E(r) = εs, j

εt, j
E0

∑
n, m

α j
nmM(1)

nm(kt, jr) + β j
nmÑ(1)

nm(kt, jr)

+ γ j
nmM(2)

nm(kt, jr) + δ j
nmÑ(2)

nm(kt, jr), (25)

where s j = √
εt, j/

√
εm and α

j
nm, β

j
nm, γ

j
nm and δ

j
nm are coef-

ficients that can be determined as described in Appendix A.
M(i)

nm, N(i)
nm are vector spherical wave functions [43] and

M̃(i)
nm, Ñ(i)

nm are their complex-order counterparts. The total
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absorption cross section for all layers up to the jth interface
(r = a j) can then be expressed as

Cabs(r � a j ) = 2π

k2
m

Re

{
i

s j

∞∑
n=1

(2n + 1)

× [
β j

nmψ̃ ′
n(s jx j ) + δ j

nmχ̃ ′
n(s jx j )

]
× [

β j
nmψ̃n(s jx j ) + δ j

nmχ̃n(s jx j )
]∗

− [
α j

nmψn(s jx j ) + γ j
nmχn(s jx j )

]
× [

α j
nmψ ′

n(s jx j ) + γ j
nmχ ′

n(s jx j )
]∗

}
, (26)

where x j = kma j . From these, the absorption cross section for
an individual layer j is simply obtained as the difference

C j
abs = Cabs(r � a j ) − Cabs(r � a j−1). (27)

For the special case of the core ( j = 0), we have γ 0
nm = δ0

nm =
0 and the absorption cross section simplifies to

CCore
abs = 2π

k2
m

Re

{
i

sc

∞∑
n=1

(2n + 1)
(∣∣α0

nm

∣∣2
ψn(scz)[ψ ′

n(scz)]∗

+ ∣∣β0
nm

∣∣2
[ψ ′

n(scz)]∗ψn(scz)
)}

. (28)

In our case of a two-layer EMM, there is no absorption in the
spacer layer and the absorption inside the anisotropic shell can
then be computed as

CShell
abs = Cabs − CCore

abs , (29)

where Cabs is the total absorption cross section, which in this
case can either be computed from Eq. (27) ( j = 2) or from
Eq. (4). The second expression is simpler, but we checked that
both give the same result.

The TASA can be used to compute CShell
abs without the need

for complex-order Bessel functions. This can be done using
Eqs. (29) and (28) with coefficients α0

nm and β0
nm as given in

Appendix C. As illustrated in Fig. 3, the TASA solution for
the internal absorption of the core CCore

abs [Fig. 3(a)] and the
shell CShell

abs [Figs. 3(b) to 3(c)] again agrees well with the full
solution.

It is worth reemphasizing that the shell internal absorption
is not identical to the differential absorption cross section and
this is shown explicitly in Figs. 3(b) and 3(c) where the two
are compared for the two dye orientations (perpendicular and
parallel). The peaks in δCShell

abs can be interpreted as surface-
enhanced absorption. The main peak at 526 nm is the original
dye peak. The shoulder at 430 nm and small peak at 370 nm
correspond to enhanced absorption at the nanoparticle dipolar
and quadrupolar plasmon resonance. The dye absorption is
normally small there, but is nevertheless enhanced as a result
of enhanced local field at these resonances [11]. δCCore

abs is
dominated by the plasmon resonance peaks, but more inter-
esting effects are visible when subtracting the cross section
of the bare NP only, which reveals the effect of the dye
layer on the core absorption. A derivative-like spectral shape
is observed around the quadrupolar resonance (for δCCore

abs ).
This is attributed to the quadrupolar plasmon resonance shift

FIG. 3. (a) Internal absorption cross section inside the silver
sphere CCore

abs for two dye orientations, perpendicular (⊥) and tan-
gential (‖). The TASA and full solutions are compared. (b,c)
Corresponding internal absorption in the shell CShell

abs in the full and
TASA solutions for (b) ⊥ and (c) ‖ dye orientations. These are
compared to the differential core absorption δCCore

abs and the standard
differential absorption cross-section δCabs discussed earlier. Note that
δCabs = δCCore

abs + CShell
abs .

induced by the presence of the dye layer. We note that this
shift appears larger in magnitude for perpendicular dye orien-
tation. Such shifts of the plasmon resonance as a function of
the external dielectric medium are expected [11,14]. However,
the influence of dye orientations on these shifts had not been
discussed. A more detailed discussion is, however, outside the
scope of the present work.

VI. CONCLUSION

We derived expressions for the Mie coefficients of the
two-layer EMM scattering problem in the thin-shell approxi-
mation. We checked the validity of this approximation against
the full anisotropic Mie solutions and shown that it is accurate
for dye-on-NP systems, much more so than the single-layer
EMM. The main advantage of this thin shell approxima-
tion is that the solution does not require the computation of
Bessel functions of complex order, which will simplify further

033502-5



TANG, AUGUIÉ, AND LE RU PHYSICAL REVIEW A 104, 033502 (2021)

analytical development and speed up numerical calculations.
We also illustrated the usefulness of this work by calculating
the internal absorption cross sections inside the shell and
the core, individually. This study was focused on the optical
properties of a system consisting of a particle coated with a
(sub)monolayer of molecules, where the thin-shell approxi-
mation is particularly suited, but we believe the TASA could
also prove useful for a particle surrounded by small particles
(core-satellites system). For the approximation to remain valid
for such a thicker shell, it may be required to include second
or higher orders of the Taylor approximation as in Ref. [44].
Overall, this work complements our recent development of an
effective medium model for dyes adsorbed on NPs [32] and
will simplify its implementation and uptake for calculations
of their optical properties, for example, to study the influence
of adsorbate orientation effects on plasmon resonances.
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APPENDIX A: FULL ANISOTROPIC MIE SOLUTIONS

We first write down the electric fields expansions in terms
of vector spherical harmonics (VSHs) [43] for the incident
field, scattered field, and internal fields in the core, spacer, and
shell, respectively,

EInc = E0

∑
n, m

anmM(1)
nm(kmr) + bnmN(1)

nm(kmr),

ESca = E0

∑
n, m

pnmM(3)
nm(kmr) + qnmN(3)

nm(kmr),

EC = E0

∑
n, m

α0
nmM(1)

nm(kinr) + β0
nmN(1)

nm(kinr),

EGap = E0

∑
n, m

α1
nmM(1)

nm(kmr) + β1
nmN(1)

nm(kmr)

+ γ 1
nmM(2)

nm(kmr) + δ1
nmN(2)

nm(kmr),

ESh = ε

εt
E0

∑
n, m

α2
nmM(1)

nm(ktr) + β2
nmÑ(1)

nm(ktr)

+ γ 2
nmM(2)

nm(ktr) + δ2
nmÑ(2)

nm(ktr).

Their corresponding magnetic fields expansions can be
found as H = (∇ × E)/iωμ. Note the presence of complex
order VSHs, Ñ(i)

nm, for the shell expansion to account for the
anisotropy. The boundary conditions at r = a mean that the

tangential components of EGap, HGap are equal to those of EC,
HC, respectively. This gives

α1
nmψn(z) + γ 1

nmχn(z) = α0
nmψn(sinz)/sin, (A1)

β1
nmψ ′

n(z) + δ1
nmχ ′

n(z) = β0
nmψ ′

n(sinz)/sin, (A2)

α1
nmψ ′

n(z) + γ 1
nmχ ′

n(z) = α0
nmψ ′

n(sinz), (A3)

α1
nmψn(z) + δ1

nmχn(z) = β0
nmψn(sinz), (A4)

where sin = √
εin/

√
εm, z = kma. From these, we deduce

γ 1
nm

α1
nm

= − sinψn(z)ψ ′
n(sinz) − ψn(z)ψ ′

n(sinz)

sinχn(z)ψ ′
n(sinz) − χn(z)ψ ′

n(sinz)
≡ �(1)

n , (A5)

δ1
nm

β1
nm

= − sinψ
′
n(z)ψn(sinz) − ψ ′

n(z)ψn(sinz)

sinχ ′
n(z)ψn(sinz) − χ ′

n(z)ψn(sinz)
≡ �(1)

n . (A6)

Similarly, the boundary conditions at r = b give[
α2

nmψn(sty) + γ 2
nmχn(sty)

]
/st = α1

nmψn(y) + γ 1
nmχn(y), (A7)[

β2
nmψ̃ ′

n(sty) + δ2
nmχ̃ ′

n(sty)
]
/st = β1

nmψ ′
n(y) + δ1

nmχ ′
n(y), (A8)

α2
nmψ ′

n(sty) + γ 2
nmχ ′

n(sty) = α1
nmψ ′

n(y) + β1
nmχ ′

n(y), (A9)

β2
nmψ̃n(sty) + δ2

nmχ̃n(sty) = β1
nmψn(y) + δ1

nmχn(y), (A10)

where st = √
εt/

√
εm, y = kmb. These lead to

γ 2
nm

α2
nm

= − [ψψ]m,s
n,y + �(1)

n [ψχ ]m,s
n,y

[χψ]m,s
n,y + �

(1)
n [χχ ]m,s

n,y

≡ �(2)
n , (A11)

δ2
nm

β2
nm

= − [ψψ]e,s
n,y + �(1)

n [ψχ ]e,s
n,y

[χψ]e,s
n,y + �

(1)
n [χχ ]e,s

n,y

≡ �(2)
n . (A12)

The boundary conditions at r = c involve the incident and
scattered field on the outside and give

anmψn(x) + pnmξn(x) = [α2
nmψn(stx) + γ 2

nmχn(stx)]/st,

(A13)

bnmψ ′
n(x) + qnmξ ′

n(x) = [β2
nmψ̃ ′

n(stx) + δ2
nmχ̃ ′

n(stx)]/st,

(A14)

anmψ ′
n(x) + pnmξ ′

n(x) = α2
nmψ ′

n(stx) + γ 2
nmχ ′

n(stx)], (A15)

bnmψn(x) + qnmξn(x) = β2
nmψ̃n(stx) + δ2

nmχ̃n(stx), (A16)

where x = kmc. These lead to

�n = − [ψψ]m,s
n,x + �(2)

n [χψ]m,s
n,x

[ψξ ]m,s
n,x + �

(2)
n [χξ ]m,s

n,x

, (A17)

�n = − [ψψ]e,s
n,x + �(2)

n [χψ]e,s
n,x

[ψξ ]m,s
n,x + �

(2)
n [χξ ]e,s

n,x

, (A18)

and substituting Eqs. (A11) to (A12), we obtain

�n = pnm

anm
= − [ψψ]m,s

n,x

(
[χψ]m,s

n,y + �(1)
n [χχ ]m,s

n,y

) − [χψ]m,s
n,x

(
[ψψ]m,s

n,y + �(1)
n [ψχ ]m,s

n,y

)
[ψξ ]m,s

n,x
(
[χψ]m,s

n,y + �
(1)
n [χχ ]m,s

n,y
) − [χξ ]m,s

n,x
(
[ψψ]m,s

n,y + �
(1)
n [ψχ ]m,s

n,y
) ≡ − N1n

D1n
, (A19)

�n = qnm

bnm
= − [ψψ]e,s

n,x

(
[χψ]e,s

n,y + �(1)
n [χχ ]e,s

n,y

) − [χψ]e,s
n,x

(
[ψψ]e,s

n,y + �(1)
n [ψχ ]e,s

n,y

)
[ψξ ]e,s

n,x
(
[χψ]e,s

n,y + �
(1)
n [χχ ]e,s

n,y
) − [χξ ]e,s

n,x
(
[ψψ]e,s

n,y + �
(1)
n [ψχ ]e,s

n,y
) ≡ − N2n

D2n
. (A20)
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APPENDIX B: THIN-ANISOTROPIC-SHELL APPROXIMATION

1. Useful identities

The first two useful identities are the relationships (differential equations) between the generalized Riccati-Bessel functions
and their second derivatives, which are obtained by Lange and Aragón (Eqs. (A9) and (A10) in Ref. [35]) as

�′′
n +

[
1 − n(n + 1)

x2

]
�n = 0, (B1)

�̃′′
n +

[
1 − εt

εn

n(n + 1)

x2

]
�̃n = 0, (B2)

where � represents all types of the Riccati-Bessel functions ψ, χ , and ξ . Other useful identities are

[ψ]e,s
n,yχ̃n(sty) − [χ]e,s

n,yψ̃n(sty) = n(y), (B3)

[ψ]e,s
n,yχ̃

′
n(sty) − [χ]e,s

n,yψ̃
′
n(sty) = st

′
n(y), (B4)

[ψ]m,s
n,y χn(sty) − [χ]m,s

n,y ψn(sty) = −stn(y), (B5)

[ψ]m,s
n,y χ ′

n(sty) − [χ]m,s
n,y ψ ′

n(sty) = −′
n(y), (B6)

[ψ]e,c
n,yχ̃n(sty) − [χ]e,c

n,yψ̃n(sty) = −sinn(siny), (B7)

[ψ]e,c
n,yχ̃

′
n(sty) − [χ]e,c

n,yψ̃
′
n(sty) = −st

′
n(siny), (B8)

[ψ]m,c
n,y χn(sty) − [χ]m,c

n,y ψn(sty) = stn(siny), (B9)

[ψ]m,c
n,y χ ′

n(sty) − [χ]m,c
n,y ψ ′

n(sty) = sin
′
n(siny), (B10)

where  denotes ψ or ξ and the brackets [.] are defined in Eq. (13) in the main text. The first expression, Eq. (B3), can be easily
proven as follows

[ψ]e,s
n,yχ̃n(sty) − [χ]e,s

n,yψ̃n(sty) = {stψ̃n(sty)′
n(y) − ψ̃ ′

n(sty)n(y)}χ̃n(sty) − {stχ̃n(sty)′
n(y) − χ̃ ′

n(sty)n(y)}ψ̃n(sty)

= st
′
n(y){ψ̃n(sty)χ̃n(sty) − χ̃n(sty)ψ̃n(sty)} − n(y){ψ̃ ′

n(sty)χ̃n(sty) − χ̃ ′
n(sty)ψ̃n(sty)}

= n(y),

where for the last equality, we apply the Wronskian identity of the Riccati-Bessel function of the complex order [40], ψ̃nχ̃
′
n −

ψ̃ ′
nχ̃n = 1. The other expressions, Eqs. (B4) to (B10), can be proven in a similar fashion.

2. TASA Solution of the two-layer stratified sphere

We first define δ = x − y = kmls and search for an approximation in the limit δ � x, y. Taylor expansion to the first order in
δ leads to

�n(y, δ) = − N1n

D1n
− δ

(
N ′

1nD1n − N1nD′
1n

(D1n)2

)
, (B11)

�n(y, δ) = − N2n

D2n
− δ

(
N ′

2nD2n − N2nD′
2n

(D2n)2

)
. (B12)

We first focus on �n. We need to find the terms N2n|x=y, D2n|x=y, N ′
2n|x=y, and D′

2n|x=y to find the TASA expression for �n(δ).
Using the useful identities given above, we obtain

N2n|x=y = [ψψ]e,s
n,y

(
[χψ]e,s

n,y + �(1)
n [χχ ]e,s

n,y

) − [χψ]e,s
n,y

(
[ψψ]e,s

n,y + �(1)
n [ψχ ]e,s

n,y

)
(B13)

= �(1)
n [ψψ]e,s

n,y{stχ̃n(sty)χ ′
n(y) − χ̃ ′

n(sty)χn(y)} − �(1)
n [χψ]e,s

n,y{stψ̃n(sty)χ ′
n(y) − ψ̃ ′

n(sty)χn(y)}
= �(1)

n {stψn(y)χ ′
n(y) − stψ

′
n(y)χn(y)}

= st�
(1)
n . (B14)

From second to third equality, we used Eqs. (B3) and (B4). For the last equality, the Wronskian identiy of the Riccati-Bessel
function was used ψχ ′ − ψ ′χ = 1, which leads to ξχ ′ − ξ ′χ = 1 and ψξ ′ − ψ ′ξ = i. Similarly, the denominator can be found
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as

D2n|x=y = st
(
�(1)

n − i
)
. (B15)

Then, using Eqs. (B1) and (B2), we can write the derivatives of the numerator and denominator as

N ′
2n|x=y =

[
stn(n + 1)

y2

(
1 − εt

εns2
t

)
ψ̃n(sty)ψn(y) + (

s2
t − 1

)
ψ̃ ′

n(sty)ψ ′
n(y)

](
[χψ]e,s

n,y + �(1)
n [χχ ]e,s

n,y

)

−
[

stn(n + 1)

y2

(
1 − εt

εns2
t

)
χ̃n(sty)ψn(y) + (

s2
t − 1

)
χ̃ ′

n(sty)ψ ′
n(y)

](
[ψψ]e,s

n,y + �(1)
n [ψχ ]e,s

n,y

)

= stn(n + 1)

y2

(
εt

εns2
t

− 1

)
ψn(y)

[
ψn(y) + �(1)

n χn(y)
] + st

(
1 − s2

t

)
ψ ′

n(y)
[
ψ ′

n(y) + �(1)
n χ ′

n(y)
]
, (B16)

D′
2n|x=y = stn(n + 1)

y2

(
εt

εns2
t

− 1

)
ξn(y)

[
ψn(y) + �(1)

n χn(y)
] + st

(
1 − s2

t

)
ξ ′

n(y)
[
ψ ′

n(y) + �(1)
n χ ′

n(y)
]
. (B17)

The same approach can be applied to get all the terms for �n(δ).

APPENDIX C: INTERNAL ABSORPTION

To compute the internal absorption inside the core and the shell, separately, we need the coefficients α0
nm and β0

nm. We shall
first derive the expression for β0

nm. Equations (A14) and (A16) give

β2
nm

bnm
= − [stψ

′
n(x)χ̃n(stx) − ψn(x)χ̃ ′

n(stx)] − �n[stξ
′
n(x)χ̃n(stx) − ξn(x)χ̃ ′

n(stx)], (C1)

δ2
nm

bnm
=[stψ

′
n(x)ψ̃n(stx) − ψn(x)ψ̃ ′

n(stx)] + �n[stξ
′
n(x)ψ̃n(stx) − ξn(x)ψ̃ ′

n(stx)]. (C2)

In the limit of x → y (thin-shell approximation), the Taylor expansions are

β2
nm

bnm
(δ) = β2

nm

bnm

∣∣∣∣
x=y

+ δ
∂

∂x

(
β2

nm

bnm

)∣∣∣∣
x=y

, (C3)

δ2
nm

bnm
(δ) = δ2

nm

bnm

∣∣∣∣
x=y

+ δ
∂

∂x

(
δ2

nm

bnm

)∣∣∣∣
x=y

, (C4)

where the first derivative of these coefficients can be found as

∂

∂x

(
β2

nm

bnm

)
= − stn(n + 1)

x2

(
1 − εt

εns2
t

)
[ψn(x) + �nξn(x)]χ̃n(stx) − (

s2
t − 1

)
[ψ ′

n(x) + �nξ
′
n(x)]χ̃ ′

n(stx), (C5)

∂

∂x

(
δ2

nm

bnm

)
= stn(n + 1)

x2

(
1 − εt

εns2
t

)
[ψn(x) + �nξn(x)]ψ̃n(stx) + (

s2
t − 1

)
[ψ ′

n(x) + �nξ
′
n(x)]ψ̃ ′

n(stx). (C6)

Therefore, Eqs. (A8) and (A10) become

bnm[ψ ′
n(y) + �nξ

′
n(y) + F1] = β1

nmψ ′
n(y) + δ1

nmχ ′
n(y), (C7)

bnm[ψn(y) + �nξn(y) + F2] = β1
nmψn(y) + δ1

nmχn(y), (C8)

where

F1 = δ
n(n + 1)

y2

(
1 − εt

εns2
t

)
[ψn(y) + �nξn(y)], (C9)

F2 = δ
(
1 − s2

t

)
[ψ ′

n(y) + �nξ
′
n(y)]. (C10)

From Eqs. (C7) and (C8), we can then express β1
nm and δ1

nm as

β1
nm

bnm
= 1 + �n + [F2χ

′
n(y) − F1χn(y)], (C11)

δ1
nm

bnm
= i�n + [F1ψn(y) − F2ψ

′
n(y)]. (C12)

We can then rearrange one of the Eqs. (A2) or (A4) to deduce
the TASA for the internal coefficient β0

nm:

β0
nm = sin

β1
nmψ ′

n(z) + δ1
nmξ ′

n(z)

ψ ′
n(sinz)

= β1
nmψn(z) + δ1

nmξn(z)

ψn(sinz)
.

(C13)

A similar procedure can be followed to get α0
nm, giving

α1
nm

anm
= 1 + �n,

γ 1
nm

anm
= i�n, (C14)

which leads to

α0
nm

anm
= ψ ′

n(z) + �nξ
′
n(z)

ψ ′
n(sinz)

= sin
ψn(z) + �nξn(z)

ψn(sinz)
. (C15)

These TASA expressions for α0
nm and β0

nm are in terms of
the incident coefficients and they do not require the calcula-
tions of complex-ordered Bessel functions.
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