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Abstract: The T-matrix framework offers accurate and efficient modelling of electromagnetic
scattering by nonspherical particles in a wide variety of applications ranging from nano-optics
to atmospheric science. Its analytical setting, in contrast to purely numerical methods, also
provides a fertile ground for further theoretical developments. Perhaps the main purported
limitation of the method, when extended to systems of multiple particles, is the often-stated
requirement that the smallest circumscribed spheres of neighbouring scatterers not overlap. We
consider here such a scenario with two adjacent spheroids whose aspect ratio we vary to control
the overlap of the smallest circumscribed spheres, and compute far-field cross-sections and
near-field intensities using the superposition T-matrix method. The results correctly converge
far beyond the no-overlap condition, and although numerical instabilities appear for the most
extreme cases of overlap, requiring high multipole orders, convergence can still be obtained
by switching to quadruple precision. Local fields converge wherever the Rayleigh hypothesis
is valid for each single scatterer and, remarkably, even in parts of the overlap region. Our
results are validated against finite-element calculations, and the agreement demonstrates that the
superposition T-matrix method is more robust and broadly applicable than generally assumed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Scattering of electromagnetic (EM) radiation is a ubiquitous phenomenon, which determines
how we see the world (literally), plays an important role in regulating the temperature of our
atmosphere, and underpins various spectroscopic techniques used for materials characterisation.
Classical theoretical description of EM scattering is provided by the vector Helmholtz equation
(which follows from Maxwell’s equations under certain physical assumptions), and when
supplemented with appropriate numerical methods and approximations it constitutes a framework
for computational modelling of optical properties of matter. Within this framework the T-matrix
formalism introduced by Waterman [1–4] is particularly effective. Unlike purely numerical
methods such as finite-element, the T-matrix framework shares strong analytical connections
with the exact Mie [5] solution (expressed as a series of electric and magnetic multipoles) for
spherical scatterers, and extends it to nonspherical scatterers such as spheroids [6]. This approach
provides efficient and accurate simulations of orientation-averaged optical properties, as well as
near-field calculations, which are of great value in applications such as nano-optics [7,8], and can
serve as benchmark results to test other numerical methods. The superposition T-matrix method
(STM) [9–11] generalises the framework to collections of disjoint scatterers, such as a clump of
interstellar dust [12,13], a collection of ice crystals [14] or soot particles [15,16] in air, or colloidal
clusters of plasmonic nanoparticles in solution [8,17–19]. The major stated restriction of STM
method is the condition that the particles’ smallest circumscribed spheres should not overlap
[9,11,20,21], which has limited its application to either sparse clusters or spherical particles.
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This “no-overlap” condition can be traced back to Peterson and Ström [9], who used it to avert
potential problems when translating the underlying series expansions. Additional problems may
also be expected from violation of the Rayleigh hypothesis (RH) [22–24], which postulates that
the scattered field immediately outside a particle can be expanded into a series of outgoing vector
spherical wave functions (VSWFs). This hypothesis is known to be invalid in certain regions
[25], and the scattered field derived from the extended boundary condition method (EBCM)
[1,4,26] may therefore diverge in parts of a particle’s circumscribed sphere. This divergence
would seem to provide another justification for the no-overlap condition, since two adjacent
particles affect one another through their scattered field. Most derivations [4,27] and applications
[28,29] of the STM method either explicitly start with the no-overlap assumption or abide by it
implicitly by considering only sparse configurations [30,31]. While the assumption is irrelevant
if all the constituent scatterers are spheres [11,32,33], it becomes increasingly more restrictive for
highly anisotropic scatterers, effectively ruling out potential studies of densely packed aggregates.
Recently, modifications have been proposed [21,34] to overcome this limitation, but at the expense
of added complexity and computational demands.
We here demonstrate on numerical examples that the “no-overlap” condition is in fact not

strictly necessary. For this, we systematically examine the effect of overlap on optical properties
of two adjacent prolate spheroids and show that the conventional superposition T-matrix method
[11,28,32,33,35] still produces valid results even for large overlap, provided the calculations
are performed with sufficient numerical precision. We implemented the STM method in a
custom-made program called terms (T-matrix for Electromagnetic Radiation with Multiple
Scatterers), and validated the results against finite-element (FE) calculations [36]. We focus
on an experimentally-relevant example in plasmonics, interacting silver nanospheroids, but the
interpretations and conclusions are general. The apparent but unexpected validity of the STM
method is discussed in the context of the Rayleigh hypothesis as well as the translation-addition
theorem for vector spherical wave functions [27,37,38]. This work aims to dispel some lingering
misconceptions in the literature about the no-overlap assumption and to demonstrate the surprising
robustness of the STM method with numerically stable implementations.

2. Theoretical background

We start with a brief summary of the underlying theoretical formalism.

2.1. The T-matrix method for a single scatterer

The T-matrix formalism introduced by Waterman [1–3] can be viewed as a generalisation of Mie
theory to nonspherical scatterers.

At a point coordinate r exterior to the scatterer (zones 1 and 2 in Fig. 1(a)), the local EM field
f(r) is a superposition of the incident field finc(r) and the scattered field fsca(r) = f(r) − finc(r),
each represented by a series expansion in terms of VSWFs. From physical considerations,
finc(r) and fsca(r) are described by the regular and irregular VSWFs, herein denoted by w̃snm(r)
and wsnm(r), respectively, with s specifying the mode (electric or magnetic), n = 1, 2, 3, . . .
the multipole order, and m = −n, . . . , 0, . . . , n the degree. After mapping s, n, and m onto a
composite index l(s, n,m), the field can be expressed compactly as

f(r) =
∞∑
l=1

ãlw̃l(r)︸       ︷︷       ︸
finc(r)

+

∞∑
l=1

alwl(r)︸       ︷︷       ︸
fsca(r)

= W̃(r)̃a +W(r)a, (1)

where al and ãl are constant, complex-valued coefficients. It is convenient to adopt a matrix-vector
notation where al and ãl are components of column vectors a and ã, and the corresponding
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VSWFs are stored as 3 ×∞ matrices W = [w1,w2, . . . ] and W̃ = [w̃1, w̃2, . . . ]. In this notation
the T-matrix ansatz is simply

a = T ã, (2)

where T is the so-called T-matrix, transforming a known ã (e.g. for an incident plane wave)
into the unknown a, thus providing a complete solution to the scattering problem at a specified
vacuum wavelength λ. Note that we suppressed λ in all our expressions to minimise clutter, but ã
actually depends on the wavenumber kmed in the host medium (of real dielectric function εmed),
while T depends on the scatterer’s geometry and wavenumber k = (2π/λ)

√
ε(λ), where ε(λ) is

a material-dependent dielectric function. For a spherical scatterer centred at the origin, T is
diagonal with the analytic Mie coefficients [5,39] on the main diagonal. For nonspherical shapes
T can be determined numerically using the extended boundary condition method [1,4,26], which
is particularly well-developed for spheroids [6,20,40,41]. After a is determined using (2), the
extinction (σext) and scattering (σsca) cross-sections for the given incidence and scatterer can be
calculated using [4]

σext = −
R

{
ã†a

}
k2med

and σsca =
a†a
k2med

, (3)

where the dagger (†) indicates the conjugate transpose, and R{. . . } is the real part of a complex
number inside the braces.

Fig. 1. (a) Prolate spheroid with major semi-axis c, minor semi-axis a, and focal distance
f =
√
c2 − a2. Dashed black and red circumferences represent the circumscribed (CS) and

focal sphere (FS) of radius c and f , respectively. Digits 1, 2, and 3 demarcate the far, near,
and interior zones. (b) Two spheroids and three reference frames with aligned orientation but
different origins: O, Oi, and Oj. (c–f) Clusters of two identical spheroids side by side, with
c varied to increase the degree of overlap: (c) CSs intersect but not FSs, (d) FSs intersect, (e)
FSs intersect with other spheroid, (f) rji<c. In the latter cases, the solid red circumference
represents the transformed singularity of irregular VSWFs when translated by a vector rji.

2.2. The Rayleigh hypothesis

That Eq. (1) provides a valid (i.e. converging to the correct value as the multipole order n
increases) representation of f(r) everywhere outside the scatterer is only a conjecture, often
referred to as the RH. For fsca(r) arising from an arbitrarily shaped scatterer, the validity of
W(r)a has never been proven inside the smallest circumscribed sphere. Whether the RH holds
true anywhere inside that sphere but still exterior to the scatterer (zone 2 in Fig. 1(a)) is not
generally well known, though for spheroids the RH has been shown to break down only inside
the focal sphere (red region in Fig. 1(a)) [25]. This breakdown puts limits on where the local
field can be evaluated with a series expansion, but it does not affect the far-field quantities in (3),
because (2) does not actually require (1) to be valid everywhere in the exterior. The T-matrix
ansatz only requires that ã and T be well-defined, in which case a can be uniquely determined
using (2), thus allowing the calculation of cross-sections using (3), and f(r) can be evaluated
from a and ã using (1) anywhere inside the region of validity.
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2.3. Superposition T-matrix method

For N particles with known individual T-matrices Ti, where i = 1, . . . ,N, the collectively
scattered field is a linear superposition of N contributions,

fsca(r) =
N∑
i=1

f(i)sca(r − ri) =
N∑
i=1

W(r − ri)c(i)i , (4)

where c(i)i are coefficients for the partial scattered field f(i)sca(r − ri) from particle i, expanded
in terms of W(r − ri) centred at ri — the position of i’s local origin relative to the common
origin (see Fig. 1(b)). To clarify, the subscript in c(i)i specifies the associated particle, while the
superscript specifies the centre of expansion, which in principle can be at another particle’s local
origin (see below). Each particle is now excited by the incident field and by the scattered field
from all the other N − 1 particles. This feedback loop is formally expressed by a self-consistent
system of linear equations [4,9,35]

c(i)i = Ti

(̃
a(i) +

∑
j,i

c̃(i)j︷  ︸︸  ︷
O(i,j)c(j)j

)
︸                   ︷︷                   ︸

ẽ(i)i

, (5)

which is to be solved for c(1)1 , . . . , c(N)N . Here ã(i) is the incident field expansion centred at i’s
local origin, and O(i,j) is an “offset” matrix containing irregular translation-addition coefficients
(defined as in Ref. [35]). In effect, O(i,j) transforms the irregular field coefficients c(j)j into
regular field coefficients c̃(i)j — j’s contribution to the net field f(i)exc(r− ri) = W̃(r− ri )̃e(i)i exciting
particle i. This regularising transformation is supposed to produce c̃(i)j for the partial excitation
field inside the sphere of radius rji = |rj − ri | centred at ri (Fig. 1(e)), while the sphere surface is
entirely singular — corresponding to the transformed singularity at the centre of the original
irregular expansion c(j)j . Applicability and interpretation of c̃(i)j outside the singularity surface
is unclear, but it seems reasonable to expect problems when this surface crosses the boundary
of the target scatterer i (Fig. 1(f)) — a situation Peterson and Ström [9] avoided by imposing a
sufficient (but not necessary) condition of no overlap. To the best of our knowledge, the practical
implications of violating this condition have never been examined. Critically, we also ask: does
the RH carry any additional consequences when the T-matrix formalism is extended to multiple
scatterers?

2.4. Beyond the no-overlap condition

Let us consider what could happen in the special case of two prolate spheroids placed side-by-side
(Fig. 1). For a single spheroid, the region of divergence is not the full circumscribed sphere (CS),
but only the focal sphere (FS). Our intuition suggests that there should be no issues for the dimer
in Fig. 1(c), where the FSs do not intersect, even if the CSs do. This would already relax the
no-overlap condition. We can however expect something interesting and potentially problematic
when the FSs overlap (Fig. 1(d)), or worse, extend inside the other spheroid (Fig. 1(e)). An even
more extreme situation occurs when the centre-to-centre distance rji<c (Fig. 1(f)), where c is
the major semi-axis, with potentially problematic issues also arising from the translation of the
irregular VSWFs.
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3. Results

We now turn to the numerical calculation of optical properties using terms. Our implementation
supports double and quad precision calculations, using Amos’ library to calculate the Bessel
functions [42], and BLAS/LAPACK routines to solve (5). It can also import accurate T-matrices
calculated for a spheroid using our improved algorithms, smarties [43]. Note that our discussion
of the underlying formalism was based on infinite series expansions, but in practice all the series
are truncated at a specified multipole order nc — an input parameter for our calculations. After
the linear system in (5) is set up for a given nc, preconditioned using the analytic matrix-balancing
scheme of Stout et al. [28], and then numerically solved, the resulting coefficients c(1)1 , . . . , c(N)N
are “contracted” to the common origin using the regular offset matrices Õ(0,j) to produce
a =

∑N
j=1 Õ(0,j)c(j)j , which is plugged into (3) to calculate optical cross-sections. Near-fields are

calculated from Eqs. (1,4) and presented in terms of the electric field intensity enhancement
factor I/I0, where I = |f |2 is the total field intensity, and I0 = |finc |2 is the incident field’s intensity.

In order to cover the overlap scenarios illustrated in Figs. 1(c)–1(f), we consider a sequence of
silver prolate spheroids dimers with a = 20 nm, rji = 50 nm (10 nm gap), and c = 20 (2 spheres),
28 (case Fig. 1(c)), 36 (Fig. 1(d)), 44 (Fig. 1(e)), 52 (Fig. 1(f)), and 60 nm (more extreme than
Fig. 1(f)). We use Yang et al.’s [44] dielectric function for silver, choose water (√εmed = 1.33) as
the surrounding medium, and focus on an incident plane wave finc(r) = E0 exp(k · r) satisfying
k ·rji = 0 and E0 ·rij = E0rij, i.e. travel direction along the c-axis to maintain a constant geometric
cross-section σgeo = 2πa2, and linear polarisation along the dimer axis rji to strongly excite
modes located around the gap. Spectra of the scattering (σsca) and absorption (σabs = σext −σsca)
cross-sections are shown in Fig. 2, where the T-matrix results are compared with FE calculations
(using COMSOL following Ref. [36]), and with a reference T-matrix calculation for two
equivalent spheroids in isolation, to show the effect of inter-particle coupling. This particular
configuration was chosen for illustration as it is relevant to plasmonics studies, but our conclusions
are more general. The increased interaction between spheroids evidently produces a complicated
change in the spectrum, while for non-interacting spheroids the dipolar resonance around 400 nm
is simply amplified and blue-shifted slightly as c increases. Leaving the specifics of the interaction
for further studies, here we only highlight the good agreement between the T-matrix and FE
results for c ≤ 44 nm, which is unexpected considering the high degree of overlap (rij/c ≈ 1.14),
already well beyond the no-overlap condition (rij/c>2). The agreement deteriorates for the more
extreme case of c = 52 nm, where the T-matrix spectra remain smooth but do not quite fit the FE
data; and the agreement strongly deteriorates for c = 60, with wild fluctuations in the spectrum
indicating numerical problems.

All the T-matrix calculations in Fig. 2 were done in double precision with nc = 20. However,
as the spheroids become more elongated, higher multipolar orders are required to accurately
describe the scattered field; the resulting VSWFs series, in turn, require increasing numerical
precision. This is clearly illustrated in Fig. 3, where convergence of the extinction spectrum
with respect to increasing nc for c = 52 nm displays wild fluctuations for nc & 30. To check
that these fluctuations occur because of limited numerical precision, rather than more “intrinsic”
problems, we calculated σext in double- and quadruple-precision for increasing nc ≤ 50 at two
resonant wavelengths, 388 and 484 nm. The results (Fig. 3) demonstrate numerical instability of
the double-precision values from about nc & 25, while the quadruple-precision values continue
converging to the FE result (until also showing signs of numerical instability for nc & 50).
Hence, the underlying problems are clearly alleviated by resorting to higher precision, and they
could potentially be circumvented entirely with better numerical algorithms. The difficulties in
convergence are not therefore a fundamental limitation, and the no-overlap condition appears
unwarranted in these cases. In fact, converging results are obtained even for rji<c, revealing a
counter-intuitive robustness of the STMmethod in situations where the aforementioned singularity



Research Article Vol. 27, No. 24 / 25 November 2019 / Optics Express 35755

Fig. 2. Spectra of the scattering and absorption cross-sections (normalised by the geometrical
cross-section σgeo = 2πa2) for the dimers in Figs. 1(c)–1(f). Six c-values are considered
with fixed a = 20 nm and gap of 10 nm. Finite-element calculations (black circles) are
compared with T-matrix data for nc = 20 (solid red line). The reference T-matrix data
(dashed blue line) is for two spheroids isolated from each other (non-interacting).

spheres cross the target scatterer boundary. One would have reasonably expected that rij>c was a
necessary condition to ensure the validity of the translation relations on the surface of the other
scatterer.

Fig. 3. Top: Spectra of normalised extinction cross-section for the c = 52 nm case in
Fig. 2, calculated using terms with different nc values and compared with finite-element
(FE) calculations (black dots). Bottom: The FE value (thick line) at specified wavelength
compared to terms calculations in double (dashed line) and quad (solid line) precision for
increasing nc.

Another counter-intuitive result comes from consideration of the near field calculated using
(4) for the dimer with c = 36 at the resonant wavelength λ = 436 nm. The local field intensity
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and the error relative to FE results are mapped in Figs. 4(a)–4(b), showing slices along the
three planes of symmetry (note that we do not evaluate the fields inside spheroidal particles,
which presents no additional difficulties but is not the focus of this study). The exterior field
intensity converges outside the individual focal spheres, as for a single spheroid, but surprisingly
it also converges (and agrees with FE calculations) inside the focal spheres near the centre of
the overlap region. The interaction between the spheroids appears to somehow increase the
region of validity of the RH in parts of the overlap region, where (4) converges to the correct
value. Convergence with increasing nc is demonstrated in Fig. 4(c), where the intensity profile is
scanned in the direction of the incident wave vector k (parallel to the spheroids’ c-axis) passing
through the origin (the point where all three symmetry planes intersect). Convergence and good
agreement with the FE results are reached for nc<30 without any numerical instabilities in double
precision. However, much slower and more oscillatory convergence happens for the dimer with
c = 44 nm, as shown in Fig. 4(d), where the profile from T-matrix calculations oscillates with
increasing frequency and diminishing amplitude as nc rises. Although these calculations do not
fully converge for nc ≤ 60 in quadruple-precision and become numerically unstable for nc ≥ 70,
the trend nonetheless clearly shows that (1) is convergent in the overlap region, and getting
closer to the limit of convergence will require going beyond quadruple-precision with the current
approach.

Fig. 4. (a) Local-field enhancement factor I/I0 and (b) magnitude of the error relative
to FE results mapped along three symmetry planes for the c = 36 nm case in Fig. 2 at
λ = 436 nm, calculated using terms in double precision with nc = 40. White regions
outside the spheroids but inside their focal spheres indicate divergence. (c) Line scan of
the enhancement factor along k and through the point of intersection of all three symmetry
planes. Calculations with different values of nc show convergence to the FE results, all
plotted on linear and logarithmic scales for clarity. (d) Analogous line scan for the dimer
with c = 44 nm, calculated using quad precision and showing slower convergence in the
overlap region.

As a final and even more provocative example we consider a silver sphere of radius r = 15 nm
fully inside the focal sphere of a silver spheroid with a = 20 and c = 60 nm. This means
that the scattered field expansion for the spheroid by itself diverges on the entire region where
we add the sphere. A schematic of this dimer configuration is shown in Fig. 5, together with
the extinction spectrum and a map of the local field intensity for the same incidence as in
previous examples. Again, without delving into a modal interpretation of the multiple resonances,
we only stress the fact that the conventional STM method produces valid spectra for far-field
optical properties, albeit at a high computational cost of quadruple precision and high multipole
orders. And again, the presence of the second scatterer enlarges the region of convergence of the
near-field solution. Remarkably, we find that the field inside the sphere can be calculated, even
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though it is fully contained within the region where the Rayleigh Hypothesis is invalid for the
neighbouring spheroid. The internal field inside the sphere is computed using Mie theory from
the sphere-centred excitation field coefficients (a similar procedure can be used to compute the
internal field of the spheroids, but the practical implementation is more cumbersome and outside
the scope of this study).

Fig. 5. Top: normalised extinction spectra for a silver sphere of radius r = 15 nm near a
silver spheroid of a = 20 and c = 60 nm, with σgeo = π(a2 + r2). The geometry has two
symmetry planes and 5 nm gap (rij = 40 nm). Bottom: maps of the local-field intensity
enhancement (calculated using terms in quadruple precision with nc = 50) and the error
relative to FE calculations for λ = 430 nm.

4. Discussion and conclusion

When considering multiple scattering by nonspherical particles in close proximity, the STM
method is often assumed to be restricted to configurations where the smallest circumscribed
spheres of each scatterer do not intersect. Our results demonstrate that such no-overlap condition
is not necessary and can be relaxed. Does it mean that the STM method has no such restriction
and that scatterers may be placed arbitrarily close to each other, or do we need to consider another,
less-restrictive condition? Beside the Rayleigh Hypothesis, the other natural condition that arises
in the derivation of the results would be rij>c. If violated, the translation relation used to express
the scattered field as a series centred on particle i as a function of that centred on particle j would
not be valid everywhere on particle i’s surface. Such a situation should invalidate the standard
derivation of the STM method. However, our numerical calculations suggest here again that the
STM method remains valid even beyond this more restrictive condition and is much more robust
than generally assumed.
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Beyond these practical conclusions, this work raises the important question: why, or indeed
how does the STM method produce correct results when scatterers intrude on the no-overlap
condition? While a full theoretical study is outside the scope of this work, we will conclude by
discussing a possible explanation for these counter-intuitive results. We believe the considerations
that have been put forward to justify why the RH is valid/invalid for a single scatterer [25,45,46]
can also explain, at least in part, the “unreasonable applicability” of the STM method in the
context of multiple particles. The solution to the electromagnetic problem in the exterior region
is analytic and therefore defines a unique analytic continuation in the entire space, except possibly
at singular points [45]. For a spheroid excited by a plane wave, the singular region is the segment
between the focal points [25,45]. When expanding such a solution as a series, the resulting
sums will necessarily diverge at the singular points. Since the series expansion involves VSWFs
centred about the spheroid, the region of divergence becomes the entire focal sphere, namely
the smallest sphere containing all the singularities of the analytic continuation of the solution.
It should however be clear that this enlarged region of divergence is merely a consequence of
the basis chosen for the expansion, which in this case is not well-suited to the nature of the
singular region (a segment). The fact that the scattered field series diverges in a region outside
the spheroid does not invalidate the solution elsewhere; further, we submit that the solution
remains formally well-defined everywhere outside the spheroid as the series expansion, even
when divergent, uniquely defines a finite analytic continuation. We believe a similar interpretation
can be extended to multiple scatterers: what matters is the location of the singularities, not the
“artificial” region of divergence resulting from the series expansion employed. As long as the
singularities remain inside the scatterers, the exterior solution is always well-defined through
analytic continuation, even where diverging series are present. The STM framework is therefore
not affected by the divergence. Moreover, the addition of a scatterer can change the configuration
of singularities, which is likely to affect the region of convergence/divergence, as observed
numerically in our field maps. These considerations help justify some of the counter-intuitive
results obtained numerically, but clearly further work will be needed to support these arguments
with a rigorous proof. More generally perhaps, similar considerations around the divergence of
series expansions and their analytic continuation should be applicable to a much wider class of
differential equations in theoretical physics.

We hope these results will stimulate renewed theoretical efforts to improve the derivations of
the STM framework and carefully pin down its exact range of applicability. From a practical
point of view, this contribution highlights that the STM method can be applied to many relevant
problems comprising densely-packed, strongly-interacting nonspherical particles, which were
previously shunned because of the prevailing no-overlap condition.
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