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As shown recently (Majić, M. R. A., Auguié, B. & Le Ru, E. C. (2017) Spheroidal harmonic expansions
for the solution of laplace’s equation for a point source near a sphere. Phys. Rev. E, 95, 033307.),
spheroidal harmonics expansions are well suited for the external solution of Laplace’s equation for a point
source outside a spherical object. Their intrinsic singularity matches the line singularity of the analytic
continuation of the solution and the series solution converges much faster than the standard spherical
harmonic solution. Here we extend this approach to internal potentials using the Kelvin transformation,
i.e. radial inversion, of the spheroidal coordinate system. This transform converts the standard series
solution involving regular solid spherical harmonics into a series of irregular spherical harmonics. We
then substitute the expansion of irregular spherical harmonics in terms of transformed irregular spheroidal
harmonics into the potential. The spheroidal harmonic solution fits the image line singularity of the
solution exactly and converges much faster. We also discuss why a solution in terms of regular solid
spheroidal harmonics cannot work, even though these functions are finite everywhere in the sphere. We
also present the analogous solution for an internal point source and two new relationships between the
solid spherical and spheroidal harmonics.

Keywords: Laplace’s equation; analytic continuation; potential theory; spheroidal harmonics;
electrostatics.

1. Introduction

In Majić et al. (2017) we expressed the solution of Laplace’s equation for a point source outside a
sphere as series of solid spheroidal harmonics, which converges much faster than the standard spherical
harmonic series. This is intriguing as the spherical coordinate system initially appeared as more natural.
Here we consider the solution inside the sphere for the same problem of a point charge near a dielectric
sphere. The conclusions can be easily extended to any multipolar point source and to other physical
systems governed by Laplace’s equation.

The method we previously used to express the external potential in terms of spheroidal harmonics is
to substitute the expansion of irregular spherical harmonics in terms of irregular spheroidal harmonics
into the standard series solution and rearrange the order of summation (Majić et al., 2017) (although
the spheroidal solution can be derived on its own using standard methods, but with more effort). For
internal potentials, the standard solution is a series of regular solid spherical harmonics, so it would
seem natural to substitute the expansion of regular solid spherical harmonics in terms of regular solid
spheroidal harmonics. To this end, we present and prove (see Appendix) two relationships between the
spherical and offset spheroidal harmonics, similar to the ones presented in Majić et al. (2017). However,
as discussed in detail in Section 3, this approach fails to produce a suitable solution. Instead, as presented
in Section 2, the spherical solution can be manipulated by radial inversion (r → 1/r), as first discussed
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by Kelvin in 1845 (Thomson, 1847) and often known as the Kelvin transformation. This transform
is a conformal mapping often used to transform the geometry of a complex problem into a simpler
geometry in which the solution is known (Amaral et al., 2017; Dassios, 2009). We apply the transform
to turn the sphere inside out, so that the problem becomes equivalent to finding the external potential
in the transformed frame. We can then follow the same method as in Majić et al. (2017) to obtain the
solution as a series of transformed irregular spheroidal harmonics. Again, the new solution converges
much faster than the standard spherical harmonics solution. The similar case of an internal source is
treated in Section 4.

The problem has been solved in the past using spherical harmonic series (Stratton, 1941) or using
the method of images, first reported by Neumann (1883) and revisited more recently by Poladian (1988)
and Lindell (1992)1. The integral solution is the analytic continuation of the potential, which consists
of an integral over a line. This line singularity is naturally interpreted as an image source, which could
not be identified from the spherical harmonic series. Here we show that the singularities of the inverted
spheroidal harmonics lie exactly on the image line charge. This work further highlights the importance
of using basis functions with singularities matching that of the solution and makes this connection
more precisely using the Havelock formula (Havelock, 1952; Miloh, 1974). This work also leads us
to introduce an uncommon type of coordinates: radially inverted offset prolate spheroidal coordinates,
a partially separable coordinate system of the Laplacian. Similar radially-inverted coordinate systems
are discussed by Moon and Spencer (Moon & Spencer, 1961) and used in acoustic scattering (Dassions
& Miloh, 1999), and fluid dynamics (Hadjinicolaou & Protopapas, 2015), although in these texts the
spheroidal coordinates are centred about the origin.

2. Point charge outside the sphere

We consider the same problem as in Majić et al. (2017), shown schematically in Fig. 1. For convenience,
we write the potential as V = V̄ ·q/(4πε0ε1a) and work with the dimensionless V̄ . The potential outside
the sphere is V̄out = V̄q + V̄r, where V̄q is the potential of the point charge and V̄r the reflected potential.
V̄in is the potential inside the sphere. The standard solution in spherical coordinates (r, θ , φ) is (Lindell,
1992; Stratton, 1941)

V̄q = a

|r − Reẑ| = a

Re

∞∑

n=0

(
r

Re

)n

Pn(cos θ) (r < Re), (1)

V̄r = −
∞∑

n=0

βn

(
Ri

r

)n+1

Pn(cos θ) (r ≥ a), (2)

V̄in = a

Re

∞∑

n=0

2n + 1

n(ε + 1) + 1

(
r

Re

)n

Pn(cos θ) (r ≤ a), (3)

where Ri = a2/Re, Pn are the Legendre polynomials and

βn = n(ε − 1)

n(ε + 1) + 1
, with β∞ = ε − 1

ε + 1
, (4)

for a source close to the surface, Re → a, and for r → a, these series are slowly convergent.

1 Note that in Majić et al. (2017), the first solution was wrongly attributed to Lindell.
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Fig. 1. Schematic of the problem considered in this work. A point charge q is located at point E (external) outside a dielectric
sphere of radius a, on the z-axis a distance Re from the origin. Point I (internal) located at z = Ri = a2/Re is the location of
the image charge in the standard solution for the outside potential. The relative permittivity of the sphere with respect to the
surroundings is ε = ε2/ε1. The line from E to infinity is the location of the image line charge used in the solution of the internal
potential within the method of images (Lindell, 1992). The external solution was studied in the work by the Majić et al. (2017),
and we focus on the internal solution in Sections 2 and 3. Section 4 considers the case where the point charge q is located inside
the sphere at point I.

2.1 External potential

In Majić et al. (2017), the irregular spherical harmonics in (2) were expanded in terms of irregular
spheroidal harmonics Qn(ξ̄ )Pn(η̄), where (ξ̄ , η̄, φ) are spheroidal coordinates with foci at O and I
(see (A.3)), and Qn denotes the Legendre functions of the second kind. The resulting expression is

V̄r = −β∞
Ri

r ′ + 2β∞
∞∑

n=0

(2n + 1)cnQn(ξ̄ )Pn(η̄), (5)

where

cn = μ

n∑

k=0

(n + k)!

(n − k)! k!2

(−)n+k

k + μ

=
n∏

k=0

μ − k

μ + k
, μ = 1

ε + 1
. (6)

The first term on the right corresponds to an image charge, with r′ =
√

r2 − 2Rir cos θ + R2
i . Note that

Qn should be computed with a backward recurrence scheme as outlined in Majić et al. (2017).
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2.2 Internal potential

We now apply the same approach to the internal potential. Following Majić et al. (2017), we first
separate the dominant term in the series coefficients

2n + 1

n(ε + 1) + 1
= 2

ε + 1
+ β∞

n(ε + 1) + 1
, (7)

and recognize the sum over the constant term as V̄q

V̄in = 2V̄q

ε + 1
+ a

Re

∞∑

n=0

β∞
n(ε + 1) + 1

(
r

Re

)n

Pn(cos θ). (8)

From here the natural approach would be to expand the regular spherical harmonics in terms of
regular spheroidal harmonics. However, for reasons discussed in the next section, this does not work.

Instead we use the Kelvin transformation to transform the expression into one that is very similar to
that of the reflected potential. The Kelvin transformation is an inversion of the radial coordinate and is
defined in Amaral et al. (2017) Dassios (2009):

ř = a2

r
, Ře = a2

Re
= Ri, (9)

and θ , φ are unchanged. With the transformed coordinates, (8) becomes (for ř ≥ a)

V̄in = 2V̄q

ε + 1
+ a

r

∞∑

n=0

β∞
n(ε + 1) + 1

(
Ře

ř

)n+1

Pn(cos θ). (10)

We can therefore apply the expansion of irregular solid spherical harmonics of (ř, θ , φ) in terms of offset
irregular spheroidal harmonics (see (A.3)), which can be written as follows:

(
Ře

ř

)n+1

Pn(cos θ) =
∞∑

k=n

(−1)n+k 2(2k + 1)(k + n)!

n!2 (k − n)!
Qk(ξ̌ )Pk(η̌). (11)

The ‘radially inverted offset spheroidal coordinates’ ξ̌ , η̌ are the following:

ξ̌ = ř + ř′

Ře
, η̌ = ř − ř′

Ře
,

where ř′ =
√

ř2 − 2řŘe cos θ + Ř2
e . (12)

Their domains are ξ̌ ∈ [1, ∞), η̌ ∈ [−1, 1], the same as for non-inverted spheroidal coordinates.
Equation (11) is valid everywhere except for ξ̌ = 1 or equivalently θ = 0, 0 ≤ ř ≤ Ře, which
corresponds to the infinite segment on the positive z-axis with z > Re (outside the sphere). In general, if
f (r, θ , φ) satisfies Laplace’s equation, then f (a2/r, θ , φ)/r is also a solution, so Qn(ξ̌ )Pn(η̌)/r must be
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Fig. 2. Surface maps of the solution for a point charge located at z = Re = 1.02a just outside a sphere of radius a = 1 and
relative dielectric constant ε = 2.25. (a) Plots of the converged solutions for the inside potential V̄in and reflected potential V̄r ,
computed from (5) and (13) with N = 130 terms in the series. (b-c) Corresponding plots of the relative error (in log10 scale)
using the spherical harmonic series with N = 50 (b) or the spheroidal harmonic series with N = 20 (c). The horizontal line
around z = 0.5 is due to the reflected potential being very small here, which makes the relative error large. The dark radial lines in
(b-c) correspond to regions where the approximate solution coincidentally crosses the exact solution because it oscillates spatially
around the correct value.

a solution. Since the non-inverted irregular spheroidal harmonics are suitable for modelling potentials
that go to zero at infinity, the inverted harmonics should be suitable for potentials that are finite at the
origin. The corresponding iso-potentials of Qn(ξ̌ )Pn(η̌)/r are shown in Appendix D.

Following Majić et al. (2017), we then substitute the expansion in (11) into (10), change the order
of summation, relabel k ↔ n and use (6) to obtain

V̄in = 2V̄q

ε + 1
+ 2β∞

a

r

∞∑

n=0

(2n+1)cn Qn(ξ̌ )Pn(η̌), (13)

which is valid everywhere inside the sphere. As was found for the external potential, (13) converges
much faster than the standard solution as shown in Figs 2–4. This is related to the singularity of the
solution. The potential can be represented in integral form as follows:

V̄in = 2V̄q

ε + 1
+ a

Re

εβ∞
ε + 1

∫ ∞

Re

(Re/z̃)μ dz̃√
x2 + y2 + (z − z̃)2

. (14)

The last term is the the potential created by an infinite line charge on the z axis for z ≥ Re. This
corresponds exactly to ξ̌ = 1, i.e. to the singularity of Qk(ξ̌ ), which makes the inverted spheroidal
harmonics an ideal basis for the problem.

We would like to point out that although the integral solution can be evaluated numerically to any
degree of accuracy, series solutions have advantages. For example, series convergence can be more
easily tested than integral quadrature accuracies. A series solution also lends itself more easily to further
analytic derivations of other physical quantities (e.g. the flux of the field over a closed surface).
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Fig. 3. Boundary of convergence for the series solution expressed on two different bases of offset regular spheroidal harmonics
of focal lengths f1 and f2. Any series of regular spheroidal harmonics will diverge outside some spheroid and converge (to a finite
value) inside. The spheroid must be small enough so that it excludes the singularity of the analytic continuation of the series, which
extends from point E z = Re for the internal potential. A choice of a larger focal length will mean that the spheroid boundary
is too thin and the series will diverge for most of the interior of the sphere. If the focal length is very small, the boundary of
convergence approaches a sphere, the same spherical boundary that defines the convergence of the standard spherical solution, but
the spheroidal harmonics also reduce to spherical harmonics.

Fig. 4. Comparison of the convergence rates of the internal potential series using spherical (3), inverted spheroidal (13) and regular
spheroidal harmonics with f = Re (16) and f = 0.3a (17). This is quantified as the relative error between the Nth partial sum and
the ‘converged’ result. The source is at 0.02a from a sphere with ε = 2.25. The results are qualitatively ε-independent, except for
extreme values such as for perfect conductors or ε = −1. We compute the internal potential at two opposite points, θ = 0 (left)
and θ = π (right) on the sphere surface r = a (where the convergence is slowest).
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3. Problems with solutions in terms of regular spheroidal harmonics

We now analyze why it is impractical to expand the internal potential on a basis of regular spheroidal
harmonics. The regular spherical harmonics in (8) can be expanded in terms of offset regular spheroidal
harmonics just as can be done for the irregular harmonics; in fact the expansion is finite

(
r

Re

)n

Pn(cos θ) =
n∑

k=0

n!2 (2k + 1)

(n − k)! (n + k + 1)!
Pk(ξ̄e)Pk(η̄e). (15)

Equation (15) appears new and is proved in the Appendix. Note that the offset spheroidal coordinates
(ξ̄e,η̄e) are defined with O and E as foci, not O and I as used for the reflected potential. The
expansion coefficients of the internal potential in terms of regular spheroidal harmonics can be found
by substituting (15) into the potential given in (8), rearranging the order of summation and relabelling
n ↔ k:

V̄in = 2V̄q

ε + 1
+ aβ∞

Re

∞∑

n=0

(2n + 1)dnPn(ξ̄e)Pn(η̄e),

where dn =
∞∑

k=n

1

k(ε + 1) + 1

k!2

(k − n)! (k + n + 1)!
. (16)

The sum over k in the definition of dn converges, but we could not find a simple closed form of these
coefficients as was the case for cn in the solution of the reflected potential (6).

The problem in (16) lies with the region of convergence of the series (of n). One can expect that the
boundary of divergence will be the largest spheroid (constant ξ̄e) which does not cross the singularity of
the analytic continuation of the series (see Appendix C for proof). But the singularity extends from point
E to infinity and any spheroid with ξ̄e > 1 crosses this line. Consequently the series only converges for
ξ̄e = 1 – on the z axis for 0 ≤ z ≤ Re—ideally we need it for all r ≤ a. As illustrated in Fig. 4, while
there is a small improvement in the convergence rate of this series at r = a, θ = 0, the series diverges
on the other side at r = a, θ = π .

To avoid this problem, we search for a solution using offset spheroidal coordinates (ξ̄f , η̄f ) centered
on O and F=(0, 0, f ), with a smaller focal length f , as shown in Fig. 3. Writing (r/Re)

n = (r/f )n(f /Re)
n

and using (15) substituting f for Re, we obtain after the same manipulations:

V̄in = 2V̄q

ε + 1
+ aβ∞

Re

∞∑

n=0

(2n + 1)enPn(ξ̄f )Pn(η̄f ),

where en =
∞∑

k=n

(f /Re)
k

k(ε + 1) + 1

k!2

(k − n)! (k + n + 1)!
. (17)

The region of convergence of this series is again bounded by the spheroid surface (constant ξ̄f ) that
touches the base of the image singularity, i.e. it is defined by ξ̄f ≤ 2Re/f − 1. For a smaller f , this
region can be larger than before where we had f = Re, see Fig 3. By choosing f ≤ Re − a, the region
of convergence even contains the entire sphere r ≤ a, as desired. However, for a point source close to
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the sphere, we then have f 
 a, i.e. F approaches O, and the spheroidal harmonics will then approach
the spherical harmonics (up to some normalization), so the series convergence becomes similar to the
standard solution in spherical coordinates. Besides, this spheroidal harmonic series is impractical as the
coefficients en are also defined as a slowly converging infinite sum.

Finally, we note that we could have used the regular spheroidal harmonics centered about the origin
instead of the offset ones, but it does not remove the issues discussed above. Overall, all attempts at
finding a solution in terms of regular spheroidal harmonics result in either series that do not converge
over the entire interior sphere or in series that converge everywhere inside, but at a rate comparable with
the original spherical harmonic solution.

4. Point charge inside sphere

The problem is almost the same as in Fig. 1 but now with the source located at point I (z = Ri), and
the image charge at E. The potential inside the sphere (r ≤ a) is written as V̄in = V̄q + V̄r, where V̄q

is the potential due to the point charge and V̄r the reflected potential. We now expand V̄q on a series of
irregular solid spherical harmonics centered at the origin:

V̄q = a

|r − Riẑ| = a

Ri

∞∑

n=0

(
Ri

r

)n+1

Pn(cos θ) (r > Ri) (18)

The standard solution is

V̄r =
∞∑

n=0

(n + 1)(ε − 1)

n(ε + 1) + 1

(
r

Re

)n

Pn(cos θ), (19)

V̄out = a

Ri

∞∑

n=0

2n + 1

n(ε + 1) + 1

(
Ri

r

)n+1

Pn(cos θ). (20)

Following similar derivations to the problem for a point source outside the sphere, we find

V̄r = β∞Re

|r − Reẑ| + 2β∞ε
Re

r

∞∑

n=0

(2n+1)cn Qn(ξ̌ )Pn(η̌). (21)

V̄out = 2V̄q

ε + 1
+ 2

aβ∞
Ri

∞∑

n=0

(2n+1)cn Qn(ξ̄ )Pn(η̄). (22)

5. Discussion and conclusion

This work further demonstrates that spheroidal harmonics provide a more suitable basis for the solution
of Laplace’s equation for a point source near a sphere. Despite the irregular solid spheroidal harmonics
being an ideal basis for the external potential, regular spheroidal harmonics are not a suitable basis
for the internal potential. Instead, the Kelvin transformation can be used to find solution in terms of
radially inverted offset spheroidal coordinates.
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The internal potential solution presented here further highlights the connection with solutions in
terms of the method of images (Poladian, 1988; Lindell, 1992; Sten & Lindell, 1992), which was hinted
at in Majić et al. (2017). The solution in a given region of space has a unique analytic continuation
with well-defined singularities, independently of the series expansions chosen to calculate it. The best
(most rapidly convergent) basis functions for the problem are likely those with singularities that match
the singularity of the solution. In the case of the external potential for an external point source at E, the
singularity is a line between O and I, and spheroidal harmonics of the offset coordinates ξ̄ , η̄ exactly
match this. In the case of the internal potential for an external point source at E, the singularity is a line
extending from the point source at E to infinity and the radially inverted offset spheroidal harmonics
exactly match that singularity. The link with the image theory solutions can be seen more explicitly
with the Havelock formula (Havelock, 1952), which for our offset spheroidal coordinate system can be
re-expressed as follows:

Qn(ξ̄ )Pn(η̄) = 1

2

∫ Ri

0

Pn(2z̃/Ri − 1)√
x2 + y2 + (z − z̃)2

dz̃. (23)

The Legendre polynomials in the numerator are a basis for functions defined on the interval 0 ≤ z̃ ≤ Ri.
This makes Qn(ξ̄ )Pn(η̄) a basis for any charge distribution on the segment OI, and the expansion will
converge in all space (except the line segment). A similar expression can be written for the radially
inverted offset spheroidal coordinate system:

Qn(ξ̌ )Pn(η̌)

r
= 1

2

∫ ∞

Re

Pn(2Re/z̃ − 1)/z̃√
x2 + y2 + (z − z̃)2

dz̃, (24)

so Qn(ξ̌ )Pn(η̌)/r are natural functions for expressing semi-infinite linef singularities. We hope these
considerations could be fruitful in devising new approaches to improve the solutions of related problems
of mathematical physics.
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Appendix A. Relationships between spherical and spheroidal harmonics

In Majić et al. (2017) we presented two new expansions relating spherical and offset spheroidal
harmonics in the case of offset spheroidal coordinates defined for a general c > 0 as:

ξ̄c = r + r ′
c

c
, η̄c = r − r ′

c

c
,

where r ′
c = |r − cẑ| =

√
r2 − 2cr cos θ + c2. (A.1)

In the text, those coordinates are used with c ≡ Ri to express solutions outside the sphere.
We reproduce those expansions below for completeness and refer to Majić et al. (2017) for their

proofs:

Pm
n (ξ̄c)P

m
n (η̄c) = (n + m)!

(n − m)!

n∑

k=m

(−)n+k

k! (k + m)!

(n + k)!

(n − k)!

( r

c

)k
Pm

k (cos θ), (A.2)

(c

r

)n+1
Pm

n (cos θ) = 2(−)n+m

n! (n − m)!

∞∑

k=n

(−)k(2k + 1)
(k + n)!

(k − n)!

(k − m)!

(k + m)!
Qm

k (ξ̄c)P
m
k (η̄c). (A.3)

We also present and prove the inverse expansions, of which (15) and (C.3) are special cases.
These are

( r

c

)n
Pm

n (cos θ) = n! (n + m)!
n∑

k=m

2k + 1

(n − k)! (n + k + 1)!

(k − m)!

(k + m)!
Pm

k (ξ̄c)P
m
k (η̄c) (A.4)

Qm
n (ξ̄c)P

m
n (η̄c) = (−)m

2

(n + m)!

(n − m)!

∞∑

k=n

k! (k − m)!

(k − n)! (k + n + 1)!

(c

r

)k+1
Pm

k (cos θ). (A.5)
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Similar relationships have been given and proved in the case of the standard spheroidal coordinates
centered at the origin (Antonov & Baranov, 2002; Jansen, 2000; Jeffery, 1917). Equation (A.4) is proved
in the next section. Equation (A.5) can be proved following the same method used to prove (A.3) in
Majić et al. (2017) so the proof is not repeated here.

Appendix B. Proof of Equation A.4

Knowing that (A.2) holds and is a finite invertible basis transformation, it must be possible to find the
inverse expansion:

( r

c

)n
Pm

n (cos θ) =
n∑

k=m

αm
nkPm

k (ξ̄ )Pm
k (η̄). (B.1)

Substitute this into (A.2) and rearrange the order of summation to get

Pm
n (ξ̄ )Pm

n (η̄) = (n + m)!

(n − m)!

n∑

p=m

n∑

k=p

(−)n+k

k! (k + m)!

(n + k)!

(n − k)!
αm

kpPm
p (ξ̄ )Pm

p (η̄).

Since Pm
n (ξ̄ )Pm

n (η̄) are orthogonal functions, we must have

(n + m)!

(n − m)!

n∑

k=p

(−)n+k

k! (k + m)!

(n + k)!

(n − k)!
αm

kp = δnp. (B.2)

Fig. B1. Constant coordinate surfaces on the plane y = 0. Surfaces of constant η̌ (dashed lines) range from a finite line on the
z-axis for η̌ = 1 to sharply dimpled spheres for η̌ < 0. ξ̌ range from small spheres for large ξ̌ to smoothly dimpled spheres as
ξ̌ → 1. The focal length of the coordinates is 1.
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The coefficients αm
kp can be deduced by looking at the orthogonality relation for the shifted Legendre

polynomials Pn(2x − 1):
∫ 1

0
Pn(2x − 1)Pp(2x − 1)dx = δnp

2p + 1
. (B.3)

Now expand the shifted Legendre polynomials in powers of x:

δnp

2p + 1
=

∫ 1

0

n∑

k=0

(−)n+k(n + k)!

k!2 (n − k)!
xk

p∑

q=0

(−)q+p(q + p)!

q!2 (p − q)!
xqdx

=
n∑

k=0

(−)n+k(n + k)!

k!2 (n − k)!

p∑

q=0

(−)q+p(q + p)!

q!2 (p − q)!

1

k + q + 1
.

(B.4)

The sum over q can be simplified by using (6) with n → p, k → q, μ → k + 1)

p∑

q=0

(−)q+p(q + p)!

q!2 (p − q)!

1

k + q + 1
= k!2

(k − p)! (k + p + 1)!
. (B.5)

Substituting this back into (B.4) we have

n∑

k=0

(−)n+k(n + k)!

(n − k)! (k − p)! (k + p + 1)!
= δnp

2p + 1
. (B.6)

Compare this with (B.2) to find that αm
nk are in fact the coefficients given in (A.4). �

Appendix C. Boundary of convergence of Equation 17

Here we prove that the boundary of convergence of (17) is a spheroid whose surface touches point E. To
do this we look at the limit as n → ∞ of the terms in the series. The asymptotic form of the Legendre

Fig. C1. Isopotentials of the functions Qn(ξ̌ )Pn(η̌)/r for n = 0, 1, 2, 3 from left to right. The focal length of the non-inverted
spheroidal coordinates is 1, so that they are singular on the z-axis from z = 1 to ∞.
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polynomials Pn(u) for |u| < 1 is (Hobson, 1931, pp. 304–306):

Pn(u) →
√

2

πn
√

1 − u2
sin

((
n + 1

2

)
cos−1 u + π

4

)
, (C.1)

which applies to Pn(η̄f ). For Pn(ξ̄f ), we need the asymtotic form for |u| > 1:

Pn(u) →
(
u + √

u2 − 1
)n+1/2

√
2πn(u2 − 1)1/4

. (C.2)

To determine the asymptotic form of the sum over k, we evaluate (A.5) (with c → f ) at cos θ = ηf = 1:

∞∑

k=n

k!2

(k − n)! (k + n + 1)!

(
f

r

)k+1

= 2Qn(ξ̄f ). (C.3)

Integrating this expression with respect to v = ξ̄f = 2r/f − 1 from r = ∞ to r = Re:

∞∑

k=n

k!2 (f /Re)
k

(k − n)! (k + n + 1)!

−1

k
=

∫ 2Re/f −1

∞
Qn(v)dv. (C.4)

As n → ∞, the left-hand side is proportional to the sum over k in (17). Evaluating the right-hand side:
∫ u

Qn(v)dv = uQn(u) − Qn+1(u)

n + 1
. (C.5)

The asymptotic form of Qn(u) for |u| > 1 is (Hobson, 1931)

Qn(u) →
√

π/2/n

(u2 − 1)1/4
(
u + √

u2 − 1
)n+1/2 , (C.6)

so that ∫ u

∞
Qn(v)dv → constant

n3/2
(
u + √

u2 − 1
)n . (C.7)

Putting all this together, the nth term in the series in (16) approaches

constant

n

⎛

⎝
ξ̄f +

√
ξ̄2

f − 1

2Re/f − 1 +
√

(2Re/f − 1)2 − 1

⎞

⎠
n

Pn(η̄). (C.8)

Let X be the expression in the large brackets. If X < 1 (equivalent to ξ̄f < 2r/f − 1) it is clear that the
series converges since it is bounded by the series

∑
Xn/n which converges. For X > 1 (ξ̄f > 2Re/f −1),

the series diverges because the terms increase in size. Geometrically, the boundary of convergence is the
surface of a spheroid with foci at z = 0 and z = f that passes through point E at Reẑ.

Appendix D. Inverted spheroidal coordinate surfaces

For insight we plot the surfaces of constant ξ̌ and η̌ in Fig. B1 and isopotentials of the first few orders
of the harmonics Qn(ξ̌ )Pn(η̌)/r in Fig. C1.

Downloaded from https://academic.oup.com/imamat/advance-article-abstract/doi/10.1093/imamat/hxy027/5038895
by University of California-SB user
on 19 June 2018


	Laplace's equation for a point source near a sphere: improved internal solution using spheroidal harmonics
	1. Introduction
	2. Point charge outside the sphere
	2.1 External potential
	2.2 Internal potential

	3. Problems with solutions in terms of regular spheroidal harmonics
	4. Point charge inside sphere
	5. Discussion and conclusion


