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We use Monte Carlo ray-tracing modeling to follow the stochastic trajectories of rays entering a cylindrical port
from inside an integrating sphere. This allows us to study and quantify properties of realistic ports of non-
negligible length, as opposed to the common thin-port assumption used in most theoretical treatments, where
the port is simply considered as a hole in the spherical wall. We show that most practical ports encountered in
integrating sphere applications cannot be modeled as thin ports. Indeed, a substantial proportion of rays entering
the port can be reflected back into the sphere, with port reflectances as high as 80% demonstrated on realistic
examples. This can have significant consequences on estimates of the sphere multiplier and therefore pathlength
inside the sphere, a critical parameter in many applications. Moreover, a nonzero port reflectance is inevitably
associated with reduced transmittance through the port, with implications in terms of overall throughput.
We also discuss angular redistribution effects in a realistic port and the consequences in terms of detected
throughput within a fixed numerical aperture. Those results highlight the importance of real port effects for
any quantitative predictions of optical systems using integrating spheres. We believe that those effects can be
exploited to engineer ports for specific applications and improve the overall sphere performance in terms of
pathlength or throughput. This work carries important implications in our theoretical understanding of
integrating spheres and on the practical design of optical systems using them. © 2018 Optical Society of America
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1. INTRODUCTION

Integrating spheres, spherical cavities whose internal walls are
coated with a high diffuse reflectance (HDR) material, are used
in a variety of applications [1], for example diffuse reflectance
spectroscopy [2–4], or gas [5–8] and liquid [9–13] absorption
spectroscopy. For all those applications, one or more openings
in the cavity—called ports—are necessary, typically to inject
light (input port) and detect it (detection port). Rays reflect
many times off the walls until they are eventually absorbed
or escape via a port. The balance between these two loss mech-
anisms defines the properties of the integrating sphere.

The basic theory of empty integrating spheres was laid out
almost 100 years ago [14–16]. The average number of wall re-
flections, also equal to the irradiance enhancement on the
cavity wall, is called the sphere multiplier M and depends
on the wall reflectivity ρ and the areas Ai of the ports (relative
to total cavity wall area) [17,18],

M � ρ

1 − ρ�1 − f � ; (1)

where f denotes the total port fraction and is obtained from
f � P

if i, with f i � Ai∕�4πR2� the port fraction for each
port and R the sphere radius.

Implicit in this model is the assumption that all rays reach-
ing a port escape the sphere, something which we will call the
thin-port approximation. However, in many instances of inte-
grating spheres, the cavity is milled inside a thicker block of
HDR material, and ports are directly carved into the same
material, as depicted schematically in Fig. 1(a). For small ports,
or those with a high aspect ratio (port length over port radius),
one can expect that exiting rays may hit the port wall and pos-
sibly reflect back into the sphere. As a result, one cannot assume
that ports have zero reflectance, and it is therefore critical to
realistically model the behavior of ports to understand the
implications of those effects. This was recently pointed out
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in Ref. [19] in the context of diffuse reflectance measurements,
but the authors considered only the effect of the first reflection
inside the port and did not discuss how this affects the light
throughput or the sphere multiplier M.

We here use Monte Carlo simulations to model the stochas-
tic trajectories of rays inside the port and predict both reflec-
tance and transmittance of cylindrical ports as a function of
their geometrical characteristics. We study in addition how
the ports affect the angular distribution of the light that is trans-
mitted. This has important implications for many applications
because light is typically collected with a limited numerical
aperture (NA). We show using specific examples that those ef-
fects can have dramatic consequences on the predicted sphere
multiplier and overall throughput. They must therefore be
taken into account for any quantitative predictions of optical
systems using integrating spheres.

2. THEORY AND NUMERICAL METHODS

Monte Carlo ray-tracing calculations were carried out to predict
the properties of realistic cylindrical ports as shown schemati-
cally in Fig. 1(b). These consist in following the trajectory of a
ray as it undergoes stochastic reflection/absorption events when
intersecting the cavity wall [see Fig. 1(c)]. Such calculations are
relatively common and have been used to understand various
experimental setups involving integrating spheres [9,20–26].
We here apply them to study the trajectory of rays inside
the port, not inside the integrating sphere.

A ray inside the cylindrical port is described by its position
(coordinates) and direction (unit vector), and the steps in the
simulation are as follows:

• Find the intersection of the trajectory with the finite cyl-
inder defining the port. If this is located on the top (resp. bot-
tom) face, then the ray escapes (resp. returns into the cavity).

• If the intersection is on the side wall, then we assume a
Lambertian reflector of reflectivity ρ, and the ray is therefore

absorbed with a probability 1 − ρ. If not absorbed, the ray is
reflected in a random direction with a Lambertian probability
distribution, i.e., the angle θ with respect to the surface normal
follows the probability distribution p�θ� � 2 cos θ sin θ. Note
that such a probability distribution results in the well-known
Lambertian intensity distribution I�θ� ∝ cos θ. We here ne-
glect the effect of any subsurface scattering or any deviation
from a perfect Lambertian distribution. Note also that,
although we use the same notation ρ for simplicity, the port
wall reflectivity may be different to the wall reflectivity of
the integrating sphere.

• The simulation continues until the ray either escapes,
returns, or is absorbed.

By repeating the simulation with a large number of rays, the
probability of escape τport (port transmittance), of return ρport
(port reflectance), and of absorption αport can be computed.
Note that

τport � ρport � αport � 1: (2)

Those parameters depend on the wall reflectivity ρ, and on
the geometric properties of the port: radius aport and height
hport as defined in Fig. 1(b). However, since the problem is scale
invariant, results will depend only on the aspect ratio, which we
here define as ξ � hport∕�2aport�. In principle, there is also a
small dependence on the angular distribution of the incoming
rays (entering the port). In an ideal spherical cavity with small
port fraction, the probability of receiving a ray from any other
point on the sphere is uniform [18]. To account for this prop-
erty, the initial characteristics of the rays are determined as
follows:

• the location of the ray is chosen at random on the spheri-
cal cap defined by the intersection between the sphere and the
cylindrical port [marked as a bold red line in Fig. 1(b)]; and

(a) (b) (c)

Fig. 1. (a) Schematics of representative ports in an integrating sphere where rays entering the port may hit the port wall. (b) Definition of the port
geometrical parameters for the cylindrical ports considered in this work. Note that the port height is defined from the intersection of the sphere and
the cylinder, not from the top of the spherical cap. Representative rays originating from inside the sphere, serving as the initial condition in the
simulations, are also shown. (c) Examples of ray trajectories inside the port as obtained fromMonte Carlo ray-tracing simulations. For each reflection
off the wall, the rays are randomly redirected with a Lambertian profile, and have a small probability (1 − ρ) of being absorbed by the wall, con-
tributing to the port absorptance. Rays that are not absorbed either return to the sphere (contributing to a nonzero port reflectance) or escape
(contributing to port transmittance).
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• the direction of the ray is chosen by picking a random
point on the sphere wall outside the port and assuming that
the ray originates from that point.

With this method, the angular distribution of the incoming
rays entering the port is approximately what would be expected
for a port in an integrating sphere. This still neglects the effect
of the location of the other ports in the sphere (those effects
should be negligible unless the total port fraction is large, which
is uncommon). For all our simulations, we assumed a sphere
radius of R � 25aport, but the initial ray distribution has little
dependence on this choice except when the ports are very wide.

For convenience, an example implementation of these sim-
ulations in Matlab/Octave is provided in Code 1, Ref. [27].
Note that this code has been simplified for readability and
can therefore be readily translated to other programming lan-
guages but, as a result, is not optimized for speed.

Once the port reflectances are found, the sphere multiplier
can be derived from a generalization of Eq. (1) to the case where
the sphere is composed of N � 1 regions, each of fractional
area f i and reflectance ρi (i � 0…N ), and where region 0
corresponds to where the incident light first hits the wall
(for example, the sample in diffuse reflectance measurements)
[28], as follows:

M � ρ0

1 − ρ
�
1 −

PN
i�0 f i

�
−
PN

i�0 f iρi
: (3)

We will here assume that light is incident on the sphere wall,
not on a sample port, so that ρ0 � ρ and the expression for N
ports then simplifies to

M � ρ

1 − ρ�1 − f � −PN
i�1 f iρi

: (4)

Note that this expression reduces to Eq. (1) within the
thin-port limit (i.e., ρi � 0).

From this, the sphere throughput as detected through a
given port, i.e., power exiting the port relative to power injected
into the sphere, is given by

Qport �
Pport

P0

� τportMf port; (5)

where f port � a2port∕�4R2� is the port fraction for a cylindrical
port. This is the same expression as in the standard theory of
integrating spheres [18], except that the port transmittance is
explicitly included since it is no longer unity. Note also that M
may be larger as the result of the nonzero port reflectan-
ces [Eq. (4)].

Finally, we will also study the angular distribution of the rays
that escape the port. This may affect any experiments where a
detector with a fixed NA is placed just outside the port. In the
standard theory of integrating spheres (thin-port limit), the es-
caping rays are uniformly distributed on the port and originate
from all locations on the sphere wall with equal probability.
Defining θe as the angle of the escaping ray with respect to
the cylindrical port axis, this results in a probability distribution

pthin�θe� � 2 sin θe cos θe : (6)

For a detector of radius adet and numerical aperture
NA � sin θdet, assuming an outcoupling efficiency of
100%, the detected throughput is then [18]

Q thin
det �NA� � Mf det

Z
θdet

0

p�θe�dθe � Mf det�NA�2; (7)

where f det � a2det∕�4R2�. We note that although this expres-
sion is often applied when collecting light with a fiber of a given
NA, one should in principle take into account the non-
negligible contribution of skew rays [29] with angles larger than
strictly allowed by the fiber NA.

The detection port may be larger in practice than the detec-
tor itself, i.e., adet < aport. In the thin-port approximation, aport
affects only the detected throughput via its effect onM , but this
may no longer be the case for realistic ports because rays may be
redirected by the reflections inside the port. Using Monte Carlo
simulations for a large number of rays, we can compute the
histogram of θe for those rays that are exiting the port within
the detector area and deduce p�θe� and Qdet for a realistic port.

3. RESULTS AND DISCUSSION

A. Port Reflectance and Transmittance
The results of our Monte Carlo simulations are summarized in
Fig. 2, where we present the computed port reflectance, trans-
mittance, and absorptance as a function port aspect ratio ξ,
which is the most important parameter. Experimentally rel-
evant values of ξ depend strongly on the type of applications.
For example, spectroscopy typically uses smaller ports, espe-
cially if optical fibers are used, resulting in larger port aspect
ratios. The sphere material is also a relevant factor, with volume
scatterer such as PTFE typically requiring larger thicknesses and
therefore higher ξ than near-surface scattering coatings such as
barium fluoride. We also consider the effect of the port wall
reflectivity ρ, with values ranging from 1 down to 0.96. The
value of ρ � 0.993 is chosen as a typical maximum reflectivity
for PTFE-based material. Those results are also tabulated in
Table 1 for convenience and future reference. From those,
the following conclusions can be drawn:

Fig. 2. Predicted port reflectance ρport, transmittance τport, and
absorptance αport as a function of port aspect ratio ξ for different port
wall reflectivity ρ. τdirect is the probability that a ray entering the port
exits it without hitting the port wall. An interactive version of this
figure is available online at http://nano-optics.github.io/apps/sphere.
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• First and most importantly, the common thin-
port assumption of ρport � 0; τport � 1 is clearly inadequate
over a large parameter range. Already for an aspect ratio of
only ξ � 0.25, we predict that ρport ≈ 20%, and this reaches
50% for ξ � 1. For a typical HDR material thickness
of hport � 10 mm, the latter corresponds to a relatively wide
port of 10 mm in diameter. Considering a smaller 2-mm-
diameter port, the reflectance is already 50% for a port
height of only hport � 2 mm (a very thin HDR layer). For
narrower and longer ports, the effect can be dramatic,
with a port reflectance reaching 80% for ξ � 5 and ρ ≈ 1.
Such increases in reflectance are naturally accompanied
by a corresponding decrease in port transmittance [see
Eq. (2)] with τport as low as 10% for ξ � 5 and ρ � 0.96
for example.

• The consequences for the theoretical predictions of the
sphere multiplier and sphere throughput can be significant.
For example, let us consider a 50-mm-diameter sphere with
ρ � 0.993 and two 15-mm-high, 6-mm-diameter ports (which
could, for example, be used for gas spectroscopy). The standard
(thin-port) theory, using f 1 � f 2 � 0.0072, predictsM ≈ 70
and a throughput through one of those ports of
Pport∕P0 ≈ 25%. In reality, we should instead use the real port
properties for ξ � 2.5: ρport ≈ 0.67 and τport ≈ 0.3, resulting in
M ≈ 106.5 and Pport∕P0 ≈ 11%. Such large discrepancies can
have important implications when designing an integrating
sphere for a particular application.

• Beyond a certain port height, the increase in reflectance
saturates for ρ < 1, but the transmittance keeps decreasing at
the expense of a larger absorption probability. The wall reflec-
tivity ρ only has a small influence on the prediction that is more
pronounced for higher ports where rays are likely to undergo
more reflections before escaping or being absorbed.

These numerical results can be discussed qualitatively in
simple terms. The probability of a ray hitting the port side walls
increases quickly as the port becomes longer or narrower. The
first reflection will more likely occur close to the port entrance.
Because of the Lambertian distribution of reflections, there is a
50% chance that the rays are sent back in a direction toward the
sphere. Because of the high wall reflectivity, a ray may undergo
a large number of reflections before being absorbed and can
therefore follow a trajectory similar to a random walk until
it reaches the port exit or returns to the port entrance. For
high-aspect-ratio ports, the average number of reflection be-
comes large, which increases the chance of being absorbed
by the walls along the way, hence the increase in absorptance.
We also note that the probability of a direct exit (without
touching the port walls), τdirect, is small compared to the overall
probability of exit. τdirect is related to the radiation view factor
or configuration factor [30] and can be computed from our
Monte Carlo simulations. As shown in Fig. 2, it decreases very
sharply with aspect ratio. For a port with ξ � 2.5 as in the
example above, the probability of direct exit is only 3.8%.

Table 1. Predicted Port Reflectance ρport, Transmittance τport, and Absorptance αport as a Function of Port Aspect Ratio
ξ � hport∕�2aport� for Different Wall Reflectivity ρa

ρ � 1 ρ � 0.993 ρ � 0.98 ρ � 0.96

ξ τdirect ρport τport αport ρport τport αport ρport τport αport ρport τport αport

0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000
0.100 0.819 0.091 0.909 0.000 0.090 0.909 0.001 0.089 0.907 0.004 0.087 0.905 0.008
0.200 0.672 0.166 0.834 0.000 0.164 0.833 0.003 0.162 0.9830 0.008 0.158 0.826 0.016
0.300 0.554 0.229 0.771 0.000 0.227 0.769 0.004 0.223 0.765 0.012 0.217 0.760 0.024
0.400 0.459 0.282 0.718 0.000 0.280 0.715 0.006 0.274 0.710 0.016 0.266 0.702 0.031
0.500 0.382 0.328 0.672 0.000 0.324 0.669 0.007 0.318 0.662 0.020 0.308 0.653 0.039
0.750 0.250 0.419 0.581 0.000 0.413 0.577 0.010 0.403 0.568 0.029 0.387 0.555 0.058
1.000 0.172 0.486 0.514 0.000 0.478 0.508 0.014 0.465 0.496 0.039 0.444 0.480 0.076
1.250 0.123 0.538 0.462 0.000 0.528 0.454 0.017 0.511 0.441 0.048 0.486 0.421 0.093
1.500 0.092 0.580 0.420 0.000 0.568 0.411 0.021 0.547 0.395 0.057 0.518 0.373 0.109
1.750 0.071 0.614 0.386 0.000 0.601 0.375 0.024 0.577 0.357 0.066 0.542 0.333 0.125
2.000 0.056 0.643 0.357 0.000 0.627 0.345 0.027 0.600 0.325 0.075 0.562 0.298 0.140
2.250 0.045 0.668 0.332 0.000 0.650 0.319 0.031 0.619 0.297 0.083 0.577 0.269 0.154
2.500 0.037 0.690 0.310 0.000 0.670 0.296 0.034 0.635 0.273 0.091 0.589 0.243 0.168
2.750 0.031 0.708 0.292 0.000 0.686 0.277 0.037 0.649 0.252 0.099 0.599 0.220 0.181
3.000 0.026 0.725 0.275 0.000 0.701 0.259 0.040 0.660 0.233 0.107 0.607 0.200 0.193
3.250 0.023 0.739 0.261 0.000 0.713 0.243 0.043 0.670 0.216 0.114 0.614 0.182 0.204
3.500 0.020 0.752 0.248 0.000 0.724 0.229 0.046 0.678 0.200 0.121 0.619 0.166 0.214
3.750 0.017 0.764 0.236 0.000 0.734 0.216 0.049 0.685 0.187 0.128 0.624 0.152 0.224
4.000 0.015 0.775 0.225 0.000 0.743 0.205 0.053 0.691 0.174 0.135 0.628 0.139 0.233
4.250 0.013 0.784 0.216 0.000 0.751 0.194 0.055 0.697 0.162 0.141 0.631 0.127 0.242
4.500 0.012 0.793 0.207 0.000 0.757 0.184 0.058 0.701 0.152 0.147 0.633 0.117 0.250
4.750 0.011 0.802 0.198 0.000 0.764 0.175 0.061 0.705 0.142 0.153 0.635 0.107 0.258
5.000 0.010 0.809 0.191 0.000 0.769 0.166 0.064 0.709 0.133 0.159 0.637 0.098 0.265
10.000 0.003 0.891 0.109 0.000 0.818 0.072 0.110 0.731 0.039 0.230 0.646 0.020 0.334
20.000 0.001 0.941 0.059 0.000 0.830 0.017 0.153 0.734 0.004 0.262 0.647 0.002 0.352
30.000 0.000 0.959 0.041 0.000 0.831 0.004 0.165 0.733 0.001 0.266 0.646 0.000 0.353

aτdirect is the probability that a ray entering the port exits it without hitting the port wall. All those quantities are computed fromMonte Carlo ray tracing for 108 rays.
The sphere radius is chosen as R � 25aport, but the results are almost independent of R as it only slightly affects the angular distribution of the rays entering the port as
long as R ≫ aport. An interactive version of this table is available online at http://nano-optics.github.io/apps/sphere.
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As we pointed out earlier, the nonzero port reflectance re-
sults in a higher sphere multiplier than predicted in the thin-
port theory. This, however, may not translate into a higher port
throughput because of the concomitant reduction in port trans-
mittance. In fact, from a closer analysis of the formulae given
above, one can see that the throughput decreases as the port
aspect ratio increases. Let us, for example, consider again
the simple case of a sphere with two identical ports with
f 1 � f 2 � f ∕2. We then have

M � ρ

1 − ρ�1 − f � − f ρport
; (8)

which is always larger thanM thin when ρport > 0. The through-
put through one of those ports can be expressed using ρport �
τport � αport � 1 as

Q � f
2
τportM � ρf ∕2

�1−ρ��1−f ��f αport
τport

� f
: (9)

It is clear from this expression that Q is largest when αport �
0 (as expected) and decreases as τport decreases (or as ρport in-
creases). So, the increased port reflectance may be exploited to
maximize M and therefore the pathlength inside the sphere,
but this will always be at the expense of throughput.

Equation (8) can also be used to discuss in simple terms the
importance of a nonzero port reflectance onM . If the total port
fraction is small, namely f ≪ �1 − ρ�, then M ≈ ρ∕�1 − ρ�,
and the dominant loss mechanism is absorption in the walls.
Changes in the port reflectances will have only a secondary ef-
fect on the sphere multiplier. If on the other hand the port
fractions are relatively large, namely f comparable to or larger
than �1 − ρ�, then losses through the ports are not negligible,
and a change in port reflectance can have a large impact on M .
Note that in all cases, the associated reduced port transmittance
will have a potentially large impact on predicted throughputs.

B. Signal Collection
In the majority of applications, it is not practical to collect all
the light exiting from a port. At the very least, collection is
typically limited to a fixed NA. In the case where a fiber is
used for collection, the probed area is also reduced to a
small area around the center of the port exit, typically a disk
of radius adet [see inset in Fig. 3(b)]. The standard thin-port
theory implicitly assumes that

• the port has a transmittance of 100% (as discussed, this is
clearly wrong in most cases);

• the intensity of the light exiting the port is spatially uni-
form over the port area; and

• the angular distribution of the rays exiting the port is given
by Eq. (6), which assumes that the Lambertian emission from
the sphere of uniform radiance is not modified by the port.

One could argue that those assumptions are approximately
satisfied if the optical fiber is inserted through the port with its
end face located right on the sphere surface. This is, however,
no longer the case if the fiber is placed at the port exit (for
example, if the port is smaller than the fiber coating diameter)
or if light is collected with lenses. We therefore now examine
the validity of those latter two assumptions for a realistic cylin-
drical port, using again Monte Carlo ray-tracing simulations.
For those rays that are found to escape the port, we calculate
the distance to the port center when they exit, r̄, and the exit
angle θe with respect to the port axis. For a sufficiently large
number of exiting rays (typically more than 105), we can study
the distribution of those quantities using histograms and de-
duce the corresponding probability distributions p�r̄� and
p�θe�. The results of this analysis are presented in Fig. 3 for
a representative example: ξ � 2.5 and ρ � 0.993, for which
ρport � 0.67 and τport � 0.30.

p�r̄� is compared in Fig. 3(a) to the reference distribu-
tion arising from the thin port theory: pthin�r̄� � 2r̄∕a2port

Fig. 3. Properties of rays exiting a realistic port of aspect ratio ξ � 2.5 with ρ � 0.993, computed from Monte Carlo simulation for 108 rays.
This large number is necessary to obtain reliable statistics for detection within a reduced disk of radius adet � 0.25aport in the port center.
(a) Probability distribution of the distance from the center axis r̄, normalized to the thin-port distribution pthin�r̄� � 2r̄∕a2port. (b) Probability
distribution of the exit angles into a detector pdet�θe� normalized to the thin-port result pthin�θe� � 2 cos θe sin θe and weighted by the detector
transmittance τdet defined in Eq. (10). A value of 1 (red-dashed line) corresponds to the same probability distribution as for the rays entering the port
(thin-port limit). This is computed for all rays exiting the port (adet � aport), and then only for those entering a detector of radius adet � 0.25aport,
i.e., for r̄ ≤ adet. (c) Proportion of rays detected within a given NA, either for the full port or for a detector of radius adet � 0.25aport. The power is
normalized to the thin-port result and therefore takes into account the reduced transmittance of the port (τport � 0.30 in this case). For adet �
0.25aport and small NA, this low transmittance is entirely compensated by the redirection effect evidenced in (b) and to a lesser extent by the spatial
redistribution evidenced in (a). As a result, the power detected within a given NA remains identical to the thin-port case up to NA ≈ 0.2.
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(corresponding to uniform spatial distribution). The spatial
distribution of the exiting rays is not too different from the
thin-port case and remains approximately uniform. The center
of the port is slightly favored compared to the periphery, but
the changes are of the order of 10%–15% only and will be
relevant only to the most quantitative studies. For a detecting
disk of radius adet, the transmittance into the detector can be
defined as

τdet � τport

�
aport
adet

�
2
Z

adet

0

p�r̄�dr̄ : (10)

The prefactor ensures that τdet � 1 in the thin port limit.
τdet therefore quantifies the effect of a realistic port on the
overall throughput into a detector with adet ≤ aport,

Qdet � τdetMf det; (11)

where the detector fraction is f det � a2det∕�4R2�. The dis-
tribution in Fig. 3(a) implies that τdet is typically a little bit
larger than τport. Note that by construction τdet � τport when
adet � aport.

To study the angular distribution, we calculate pdet�θe� by
considering only the rays exiting the port in a disk of radius adet
around the center. This is shown in Fig. 3(b) for adet � aport
(detection over the entire port) and for adet � aport∕4. This
probability distribution also allows us to quantify the predicted
port throughput within a given NA � sin θdet, explicitly, as
follows:

Qdet�NA� � τdetMf det

Z
θdet

0

pdet�θe�dθe : (12)

By comparison to Eq. (7), we see that τdetpdet�θe� quantifies
the effect of the port on throughput as measured at the detector
in a given direction θe . This is shown in Fig. 3(b), after nor-
malization with respect to the corresponding thin-port result
pthin�θe� � 2 cos θe sin θe . Equation (12) also leads us to
define the NA-dependent transmittance into a detector of
radius adet and given NA, as follows:

τdet�NA� � τdet

Z
sin−1�NA�

0

pdet�θe�dθe : (13)

This quantifies the effect of the port on the throughput as
measured at a detector of given NA and radius adet ≤ aport.
In the thin-port limit, we simply have τdet � 1 and
τdet�NA� � NA2. The NA dependence for a realistic port nor-
malized to this thin-port reference, τdet�NA�∕NA2, is plotted
in Fig. 3(c) for light detected over the entire port area or limited
to that of a disk of radius adet � aport∕4.

In contrast to the spatial distribution, the angular distribu-
tion of the exiting rays is strongly changed compared to the
thin-port results, with a strong angular redistribution toward
the direction of the port axis. This redistribution effect is some-
what different for detection over a reduced area, i.e., if we con-
sider only the rays exiting the port in a disk of radius
adet < aport around the center. An important feature of
Figs. 3(b) and 3(c) is that once normalized to the total number
of rays entering the detector in the thin-port limit, the prob-
ability of exit at a given angle, τdetpdet�θe�, is always smaller
than the thin-port result pthin�θe�. This means that there is
no net increase in the number of rays exiting at angles closer

to the normal, but rather a relative decrease of those exiting at
larger angles. In other words, the apparent angular redirection
comes at the expense of a decrease in overall throughput, and
one cannot do better than the thin-port limit in terms of
throughput into a detector of given area and given NA. We
believe this is related to the concept of etendue and to funda-
mental limits for the maximum light concentration achievable
in nonimaging optics [31].

Nevertheless, Figs. 3(b) and 3(c) also show that despite the
reduced overall port transmission (τport � 0.30), the thin-port
limit throughput can be retained for detection with a fixed
small NA over a reduced area. In the example of Fig. 3 and
for adet � aport∕4, the throughput is indeed unaffected by
the reduced port transmission up to NA ≈ 0.2.

(a)

(b)

Fig. 4. (a) Proportion of rays detected within a given NA, for a de-
tector of radius adet, normalized to the thin-port result. The port has
aspect ratio ξ � 1 and wall reflectivity ρ � 0.993, giving ρport � 0.48
and τport � 0.51. The largest exit angle θdirect for which rays can
exit directly is depicted in the inset of (b) and defines
NAdirect � sin�θdirect�. Below that NA, τdet�NA�∕NA2 remains con-
stant and equal to the thin port limit. (b) Probability distribution of
the exit angles pdet�θe� normalized to the thin-port result and weighted
by detector transmittance τdet for adet � 0.5aport. The contribution of
the rays exiting the port directly without reflecting off its wall is
separated explicitly and is the only contribution for angles below
θdirect � 0.24.
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To understand this result further, we carried out similar tests
as a function of adet, as shown in Fig. 4(a) for a port aspect ratio
of ξ � 1 for which the effects are more visible. It is clear that
the port transmittance of realistic ports remains the same as for
thin ports provided one restricts the detection to an area smaller
than the full port and only up to a given NA. This maximum
NA increases as the port aspect ratio decreases (ultimately up to
1 for a thin port) and also increases as the detection area be-
comes smaller. This behavior suggests that this phenomenon is
related to the rays that are exiting the port directly without
reflecting off the wall. This is confirmed in Fig. 4(b) where
we explicitly separate the contribution of those directly exiting
rays from those that reflect at least once off the wall. We define
the angle θdirect and corresponding NAdirect � sin θdirect as
shown in the inset of Fig. 4(b),

θdirect � tan−1
�
aport − adet

hport

�
� tan−1

�
1 − adet∕aport

2ξ

�
;

NAdirect �
�
1� 4ξ2

�1 − adet∕aport�2
�
−12
: (14)

One can expect from geometric arguments that all rays with
exiting angle θe ≤ θdirect have traveled directly across the port,
and their distribution is therefore Lambertian. This is indeed
what is observed in the example presented in Fig. 4(b) where
the probability distribution is exactly what would be observed
for a thin port, in other words

τdet�NA� � τthindet �NA� � NA2 for NA ≤ NAdirect: (15)

Beyond θdirect, rays are increasingly more likely to have re-
flected off the port wall and therefore potentially be sent back
into the sphere, hence the drop in normalized probability dis-
tribution. When integrating this distribution up to some given
NA, for example to obtain the graphs of Fig. 4(a), one then
expects the overall port transmittance to follow the thin-port
result until NA ≈NAdirect, as observed in Fig. 4(a).

4. CONCLUSION

In this work, we have shown that for the majority of practical
cases, the standard thin-port theory of integrating spheres is
inadequate. One should instead use actual values of port
reflectance and port transmittance, as computed for example
from Monte Carlo ray-tracing simulations. We have provided
tabulated data for future reference in the common case of a
cylindrical port coaxial with the sphere. In addition, we have
studied and discussed the angular redistribution occurring in-
side a cylindrical port as a result of multiple stochastic reflec-
tions on its side walls. We have explicitly studied the
experimentally relevant case of detection over a subregion of
the port exit and within a given NA. We have shown that
the overall port transmittance in this case is not reduced com-
pared to the thin port theory, provided the port geometry is
chosen carefully. We believe those results and associated discus-
sions will provide practitioners with a more quantitative theory
of integrating sphere pathlength and throughput, and will be
invaluable in tailoring the port dimensions in integrating
spheres toward specific applications such as sensing.
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