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ABSTRACT: We here develop a thin-shell approximation of the Mie
scattering problem for a spherical core−shell structure with radial
anisotropy in the shell. The solution of the full anisotropic Mie theory
requires the computation of Bessel functions of complex orders, which
has severely limited its application to relevant problems. The proposed
thin-shell approximation removes this hurdle and is of a similar
complexity to the isotropic Mie theory. We show that the predictions
agree with those of the full anisotropic theory for nanoparticles with a
shell thickness of the order of 1 nm or less. The approximation is
therefore of great relevance to calculations of the optical properties of
adsorbed molecular monolayers, for example, the optical response of
dye-coated nanoparticles. In this context, we also propose a simple effective medium shell model to account for the radial
anisotropy of a dye layer arising from a preferred adsorption geometry, for example, in-plane or out-of-plane. We show that the
model agrees with the predictions of a simple microscopic model, but provides additional insights on how the molecular
orientation in the dye layer affects its interaction with the nanoparticle, for example, with plasmon resonance of metallic
particles. These simple thin-shell approximation and effective medium anisotropic shell models pave the way for further
theoretical understanding of orientation and anisotropic effects in the context of dye-plasmon resonance coupling.

KEYWORDS: Mie theory, optical anisotropy, nanoshells, molecular plasmonics, anisotropic dielectric function,
effective-medium theory

Recent progress in nano-optics, enabled in part by
advanced nanofabrication techniques, but also driven by

promising emerging applications, has led to a renewed interest
in the theoretical modeling of light scattering by nano-
particles.1,2 The electromagnetic theory of light scattering is
commonly applied to isotropic media, where the dielectric
functions of the media are the same in all directions. However,
there are many relevant situations where this assumption is not
justified and extensions to anisotropic media have therefore
been developed, for example, in the context of reflection/
refraction at interfaces.3 For scattering by a finite object (such
as nano- or microparticles), Mie theory provides a rigorous
solution of the electromagnetic problem for objects with
spherical symmetry such as spheres and spherical multi-
layers.1,4 It has, for example, been used extensively to study the
optical properties of nanoparticles, for instance, the plasmon
resonances of metallic nanoparticles and core−shell struc-
tures.5,6 Core−shell spherical nanostructures have been
produced from a wide variety of materials, and the electro-
magnetic interaction between light and such multilayered
structures can give rise to a wide variety of interesting
functionalities, notably through the excitation of surface
waves.7−10

The extension of Mie theory to radially anisotropic media
was developed almost 50 years ago by Roth and Dignam,11 and
has been used, for example, to study the influence of
anisotropy on plasmon resonances.12,13 We will here focus
on the special case of a core−shell structure with a radially
anisotropic response in the shell only, as depicted in Figure 1.
This configuration is particularly relevant to many recent works
with dye-coated core−shell nanostructures, which have
become a prototypical platform to study the interaction
between plasmon and molecular resonances in either the weak
or strong coupling regimes.9,14−27 Mie theory has been used to
understand the optical properties of dye-coated particles using
effective medium theory,28 where the dye layer is treated as a
continuum medium with an effective dielectric function.29

However, many studies to date have ignored the intrinsically
anisotropic response of adsorbed dye layers, which arises from
the fact that many dyes have a strongly uniaxial optical
response (typically along the main chromophore axis) and
tend to adsorb with a preferred orientation30 (e.g., in-plane,
perpendicular, or oblique). The first aim of this paper is to
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show that the formalism developed by Roth and Dignam is
well suited to account for these anisotropic effects within the
macroscopic approach of continuous electrodynamics. It will
therefore extend previous studies carried out in the quasi-static
approximation.30−32

It should be noted, however, that this solution is more
numerically challenging than the standard Mie theory, as it
involves the use of Bessel functions of irrational or complex
orders, in addition to the standard spherical Bessel functions
(which are Bessel of half-integer order) of Mie theory.
Complex-order Bessel functions are not built-in in many
standard computing software (such as Matlab for example),
which may have limited the uptake of this theoretical approach
to model relevant experimental problems. One exception to
this is the case of bubbles or vesicles, for which the dielectric
function is the same inside and outside the shell (εc = εm). For
this special case, Lange and Aragon33 obtained simple
approximations valid in the limit of thin shells (d = b − a ≪
a), which no longer require the computation of Bessel
functions of complex order. This simplified theory can be
used in many applications, but it cannot be applied to core−
shell nanoparticle/dye systems, where the inside and outside
media are different. The second aim of this paper is therefore
to obtain a more general form of this thin-anisotropic-shell
approximation, valid for a general core material. We will show
that this new solution does not involve complex order Bessel
functions and is therefore no more numerically challenging
than standard Mie theory. The validity of this approximation is
assessed by comparing its predictions to the full anisotropic
theory of Roth and Dignam11 and shown to agree extremely
well for shells of thickness typical of a molecular monolayer (of
the order of 1 nm or less).
These results can therefore be readily used, for example, in

theoretical studies of dye-coated nanoparticles. We illustrate
this by calculating the optical properties of metallic nano-
particles coated with dyes at submonolayer coverage, within an
effective medium approximation generalized to account for the
anisotropy of the dye response. Strong orientation and
anisotropic effects are evidenced and the predictions are
compared with a microscopic model considering an individual
dye as a polarizable dipole. This work highlights the
importance of orientation effects in plasmon/dye interactions
and provides a simple anisotropic model to predict them
beyond the currently used isotropic models.

■ GENERAL MIE THEORY FOR AN ANISOTROPIC
SHELL

We consider the light scattering problem by a radially
anisotropic core−shell structure as depicted in Figure 1. A
sphere of a radius a (which we will later choose as metallic) is
covered by a thin spherical shell of thickness d = b − a
(typically a dye layer) and embedded in a nonabsorbing
medium (typically air or water). The dielectric functions of the
outside and inside media are assumed isotropic are denoted εm
and εc, respectively. The spherical shell is assumed to have an
anisotropic response characterized by a dielectric tensor, εs. As
in ref 11, we restrict ourselves to the much simpler case of
radial anisotropy where the dielectric tensor εs is diagonal in
the spherical basis with a radial component, εn, and a tangential
component, εt. This situation is the most relevant in
experiments where molecules are adsorbed with orientation
defined with respect to the local surface, that is, perpendicular
or tangential. It is a very common restriction in theoretical
treatment and the optical response of such anisotropic systems
has been called “systropic”.34

The solution of the problem was fully derived in ref 11, and
we only summarize below the final results. The field solutions
are given as in Mie theory as series, from which standard
optical properties can be derived. The extinction, scattering,
and absorption cross sections in particular take the same form
as in Mie theory, explicitly:
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ψn and χn are the regular and irregular Riccati-Bessel functions
of integer order n and ξn = ψn + iχn. (′) denotes their first
derivatives. The functions with the subscript w are their

Figure 1. Schematic of the problem: a sphere of radius a and isotropic
dielectric function εc (possibly complex and wavelength-dependent) is
surrounded by a spherical shell of thickness d = b − a with anisotropic
properties described by a tensorial dielectric function εs and
embedded in a nonabsorbing medium of dielectric constant εm
(real). εs is assumed diagonal in the spherical basis with its normal
(εn) and tangential (εt) components possibly both complex and
wavelength-dependent.
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generalization to a general complex order, defined explicitly by
ref 11

z z J z( ) ( /2) ( )w
1/2ψ π≡ τ (7)

z z Y z( ) ( /2) ( )w
1/2χ π≡ τ (8)

z z i z( ) ( ) ( )w w wξ ψ χ≡ + (9)

where

w 1/2τ = + (10)

w n n n( )
1
4

( )
1
2

t

n

2ε
ε

= + + −
(11)

Jτ and Yτ are Bessel functions of the first and second kinds.35 w
is a function of n and will, in general, be complex if εt or εn is
complex, for example, for absorbing or conducting materials in
the shell or if one is negative, as found in hyperbolic materials.
w may also be wavelength-dependent. If εt = εn, then w(n) = n
and all the expressions reduce to the isotropic case as expected.
It is worth highlighting that the definition for χw is here
different to that chosen in ref 11 in terms of J−τ. This choice
does not affect the Mie coefficients, but ensures that the
Wronskian identity ψwχw′ − ψw′χw = 1 is fulfilled. This
expression will be used for simplifications in the next section.

■ THIN ANISOTROPIC SHELL APPROXIMATION
(TASA)

To simplify calculations, facilitate further theoretical develop-
ments, and foster the adoption of the general theory presented
in the previous section, it is useful to derive simpler expressions
under specific assumptions. For example, Roth and Dignam
provided expressions in the quasi-static limit, that is, for
particle sizes much smaller than the wavelength to lowest
orders in the size parameter.11 More accurate expressions,
including higher order corrections, have similarly been
obtained for nanoshells made of isotropic materials.36 Lange
and Aragon found a simple approximation in the special case of
bubbles and vesicles (where εc = εm) in the limit of thin
shells,33 which was later extended to thicker shell by including
the next order corrections.37

Here we will derive the lowest-order approximation for thin-
shells in the more general case where the core is different from
the outside medium, εc ≠ εm, with εc possibly complex.
Defining δ = x − y = kmd, we are therefore searching for the
approximation in the limit δ ≪ x, y. We can view the Mie
coefficients as functions of y and x, or equivalently of y and δ.
For the thin-shell approximation, we can then use a Taylor
expansion to the first order in δ, which gives, for example, for
Δn:
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The full derivations for Γn(δ) and Δn(δ) are provided in
section S2 (Supporting Information). It is worth noting that
this involves some useful identities to simplify the complex
orders of the Riccati-Bessel functions, which are given and
proved in section S1. The final results are
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We note that for δ = 0, we recover the expressions of
standard Mie theory for the core only, as expected. The most
important outcome of this first-order expansion is that the
resulting expressions for Γn and Δn only involve spherical
Bessel functions of order n, as in standard Mie theory. The
complex-order Bessel functions are no longer required in this
approximation. This is the same as was obtained in the thin-
shell approximation for bubbles.33 In fact, if we set εm = εc(sc =
1), then our expressions further simplify to
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which are exactly the same expressions as (3.16 and 3.17) in ref
33, as expected.

■ MICROSCOPIC AND EFFECTIVE MEDIUM MODELS
FOR AN ANISOTROPIC LAYER OF ADSORBED
MOLECULES

In order to illustrate the range of validity and usefulness of this
thin-shell approximation, we will focus on a specific system: a
dye-coated metallic nanosphere. Measurements of the
extinction or absorption properties have already been
performed on such structures.20 They are relevant to many
experimental techniques, including surface-enhanced Raman
spectroscopy (SERS) or fluorescence6 and to studies of
molecular/plasmon resonance interactions. It is also well-
known that the adsorption orientation of molecules on a
metallic nanoparticles can significantly affect its optical
properties; this for example results in the surface selection
rules in SERS.6,38−40

For an isolated dye on a metallic nanosphere, its optical
properties can be simply understood using a microscopic
description of the dye and standard Mie theory for the
nanosphere.6 For a given incident field E0, the local field at the
dye position Eloc can be computed from Mie theory and
decomposed into a sum of its normal, Eloc

⊥ , and tangential, Eloc
∥ ,
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components (with respect to the sphere surface). For a dye
polarizability tensor α, the local field induces an oscillating
dipole p = αEloc. We will restrict to the common situation
where the dye polarizability tensor is uniaxial along the main
molecular axis with unit vector ed and characterized by a scalar
polarizability along this axis αzz. The induced dipole is then
given by p = αzz(Eloc × ed)ed. The power absorbed and
corresponding absorption cross-section for this induced dipole
follow from standard electromagnetic theory, which including
the microscopic local-field correction gives (ref 6, eqs 4.77 and
4.79):

L
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2
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is the microscopic local-field correction factor.6,41,42 Lm = 1 for
air or vacuum and is often ignored in theoretical treatments,
but is important in order to be relevant to experiments in
solution; it is therefore included explicitly here and in the
effective medium model discussed below. Note that eq 19
could also be expressed in terms of the bare dye cross-section
σdye
0 (in the same medium):
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The factor of 1/3 above arises from the orientation averaging
of the dye in solution.
The cross-section was derived for a single molecule, but can

be extended to a collection of N randomly adsorbed molecules
by surface-averaging of the local field. To further simplify, we
will consider three types of adsorption geometry relevant to
experiments and depicted in Figure 2. For random orientation

(*), the dye-layer response becomes isotropic, while for radial
(⊥) and in-plane (∥) orientations, the response should be
anisotropic. In all three cases, the absorption cross-section for
N dyes can be expressed as

C N M( ) ( )abs dye
0λ σ λ= (23)

where the absorption enhancement factor M(λ) is wavelength-
dependent and given for each case as
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⟨·⟩ refers to averaging over the surface of the sphere (since the
local field is not uniform). Averaging over the possible
orientations of the dyes results in an additional factor of 1/3
(*), 1 (⊥), and 1/2 (∥); these are multiplied by the existing
factor of 3 in eq 21. Note that, in order to compare to
experiments, one should also add the contribution of the core
(calculated from Mie theory) to obtain the absorption cross-
section of the coated sphere. In practice, especially at low dye
coverage, one can also measure the bare sphere (with no
coating) separately and subtract it from the coated sphere
spectrum to reveal the experimental differential absorption
spectrum, as explained in ref 20. Within the approximations of
the microscopic model, this differential absorption spectrum is
then given by Cabs(λ) as in eq 23. It should be noted that this
microscopic model does not take into account the possible
effect of the dye layer onto the particle response nor of one dye
onto the others (dye/dye interactions).
The effective medium approximation28,29,43 replaces the

discrete dye layer of given coverage ρ (dye/nm2) by a
homogeneous shell of thickness d, from which the volume Vs
and volumic dye concentration cd = N/Vs ≈ ρ/d can be
inferred. In the general case, local field corrections arising from
dye/dye interactions should be taken into account,44 and their
inclusion is a standard feature of the effective medium
approximation for a 3D isotropic medium.20,28,29 Generalizing
those to a 2D anisotropic medium is outside the scope of this
work, so we will neglect them here and only consider the much
simpler dilute limit. An effective dielectric function for the
homogeneous shell can then be defined following a standard
approach. In the case of fully random orientation, the effective
dielectric function is isotropic and given in the dilute case by29

c
L( )

3m d
m zz

2

0
ε ε

α
ε

* = +
(25)

In the dilute regime, we may use the microscopic model (eq
24) as a guide to generalize this to the anisotropic cases. For
radially oriented molecules, we have
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For randomly oriented in-plane molecules, we have
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Note that, in the dilute case considered here (e.g., for small ρ),
the predictions are independent of the thickness d as long as it
is small (with respect to the other dimensions, sphere radius

Figure 2. Three possible adsorption orientations of uniaxial dyes
relevant to experiments: (a) fully random orientation denoted *, (b)
perpendicular or radial denoted ⊥, and (c) random in-plane
(tangential) orientations denoted ∥. In all three cases, we assume
the dyes to be adsorbed uniformly on the sphere surface.
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and wavelength). In the following, we will set d = 0.3 nm,
unless otherwise stated.

■ MODEL VALIDATION AND APPLICATION

Using the anisotropic effective dielectric functions just derived,
we can now predict the optical properties of a dye-coated
nanosphere and compare the results of the different models
presented: Roth and Dignam’s Mie theory for anisotropic
shells (RD), our simpler thin anisotropic shell approximation
(TASA), and the microscopic model (MM) given in the
previous section. We choose to focus on a 30 nm radius silver
sphere with a dielectric function, as given in ref 6. All
calculations are performed in Matlab and are adapted from the
SPlaC codes,45 with new routines developed to calculate Bessel
functions of complex orders. The embedding medium is
chosen as water (εm = 1.332) to be more relevant to
experiments. For the dye polarizability, we use a simple
Lorentz oscillator model with parameters matching the
experimentally measured optical properties of the main
absorption peak of Rhodamine 6G, explicitly (using the
notation of ref 29):

i
( ) 3 3

3 1

1
1zz d

1 1

1 1
2

2
1
2

1

α λ α α
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= = +
− −
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Ä
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ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (28)

with α∞ = 3.2 × 10−39 [SI], α1 = 1.92 × 10−38 [SI], λ1 = 526
nm, μ1 = 104 nm. Those were obtained from the

experimentally measured absorption cross-section in water,
taking into account the local field correction factor.46

We first compare in Figure 3 the results of the full
anisotropic theory and the thin-shell approximation for dye-
coated silver spheres using the dilute effective medium model
in the three cases discussed earlier: *, ⊥, ∥ (see also Figure S1
for a similar plot with a dielectric sphere). We set here a low
dye coverage of ρ = 0.001 nm−2 and will discuss later
concentration effects. The absorption, scattering, and ex-
tinction spectra are shown for reference (a−c) but do not
reveal clearly the shell properties and the differences between
the models, as they are strongly dominated by the sphere
response. We therefore focus on the differential absorption,
scattering, and extinction spectra (d−f). These are still barely
distinguishable in all three cases: excluding the regions of zero-
crossing, the relative error is of the order of 2% for * and ⊥
cases and 5% for ∥. The accuracy of the thin-shell
approximation is further investigated in Figure S2 for larger
shell thicknesses up to 5 nm. For a 1 nm shell, for example, the
relative error increases to ≈6% for * and ⊥ and ≈15% for ∥.
These results, along with more extensive testing not shown,
confirm the validity of the thin-shell approximation and suggest
that it can be used safely in all the cases considered here (with
a 0.3 nm shell, i.e., 1:100 shell-to-radius ratio) and even up to 1
nm, that is, a 1:30 shell-to-radius ratio. We therefore use it in
the following to discuss the spectral changes predicted for each
situation. To further explain the observed spectra, we compare
in Figure 4 these results to the microscopic model predictions.
The two models agree well in the dye absorption region,

Figure 3. Mie scattering predictions for a silver sphere of radius a = 30 nm in water, coated with a d = 0.3 nm dye layer of low coverage ρ = 0.001
nm2 in the effective medium approximation for the three cases of Figure 2 (see eqs 25−27). In the two anisotropic cases, we compare the results of
the full theory of Roth and Dignam (RD) with our thin-shell approximation (TASA). The top row shows the absorption (a), scattering (b), and
extinction (c) cross sections, which are indistinguishable in all six cases, as they are strongly dominated by the response of the silver sphere. We
therefore show in the bottom row (d−f) the corresponding differential cross sections with the bare sphere response (calculated from standard Mie
theory) subtracted.
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lending further support to the anisotropic effective dielectric
functions defined in eqs 25−27.
We now discuss in more detail the orientation dependence

evidenced in Figures 3 and 4. First, we observe a large
difference in the magnitude of the dye absorption spectrum.
For a silver sphere, the absorption is expected to be enhanced
by a factor M because of the plasmon resonance, which peaks
at 430 nm but extends further in the red. For example, M* = ⟨|
Eloc|

2/|E0|
2⟩ is still of the order of ∼15 at the peak absorption of

the dye at 526 nm. It is clear that this absorption enhancement
is orientation-dependent and much stronger (respectively
weaker) at ∼40 (respectively ∼1.6) for molecular axis
perpendicular (respectively parallel) to the surface, as is well-
known qualitatively in the context of surface-enhanced
spectroscopy. The anisotropic effective shell models fully
predict and quantify this effect. They moreover predict two
phenomena that are not captured by the microscopic model.
First, we see in Figure 4 that the TASA prediction differs from
the microscopic model in the region of the plasmon resonances
of the sphere (430 nm for the main resonance and 375 nm for
the quadrupolar resonance). The TASA differential absorbance
spectra show evidence for the shift in the plasmon resonances,
especially clear around the sharper quadrupolar resonance, as

evidenced by the characteristic derivative-like spectral shape.
These shifts are again expected and well documented,14 but
how dye-orientation may affect them has not been discussed.
The effective shell model provides a simple tool to study this
orientation dependence. The predicted plasmon resonance
shifts are smaller for parallel orientation compared to
perpendicular, but the discrepancy is much less pronounced
than that observed for the dye absorption enhancement. These
predictions can also be extended to the other properties,
differential scattering and extinction, which are not covered
within the microscopic model. For example, the plasmon
resonance shifts are also observed in differential extinction
(Figure 3), but the spectra are more complicated as the dye
layer also induces a significant reduction in scattering.
The second aspect that is not captured by the microscopic

model is the effect of dye coverage. The coverage-dependent
predictions of the anisotropic Mie model (within the TASA)
are illustrated in Figure 5. As the dye concentration is
increased, shifts in the dye resonance are predicted by the
anisotropic Mie models and depend on the dye orientation: a
blueshift for random orientation, a more pronounced blueshift
for ⊥, and virtually no change for ∥, even at significantly higher
coverage. The ⊥ spectral shifts are similar to those arising from
the dye/dye interactions and are expected at higher
concentrations, as studied in ref 29. Interestingly, the redshift
that is expected for the ∥ orientation case is not observed here.
We attribute this to the fact that our dilute effective medium
shell model does not include local field corrections due to
other dyes within the shell layer, which are in principle
important at high concentration. These corrections could be
included but they cannot be simply based on the Clausius-
Mossotti relation as in isotropic media20,29 since the
anisotropic response must be taken into account in calculating
the local fields arising from dye/dye interactions. The
formalism for this has been laid out in the past,44,47 but its
implementation is outside the scope of this work and will be
discussed elsewhere.

■ CONCLUSION
In summary, we have derived expressions for the Mie
coefficients of the isotropic-core/anisotropic-shell scattering
problem in the thin-shell approximation. The range of validity
of this approximation was checked against the full anisotropic
theory and shown to be particularly suited to the case of an
adsorbed molecular layer on a nanoparticle. The main
advantage of this approximation is that the resulting
expressions are of comparable complexity to those of Mie
theory for isotropic materials. In particular, they no longer
require the computation of complex-order Bessel functions as
in the anisotropic Mie theory. We believe this simplified theory
will find application in many areas where the orientation of
adsorbates result in an anisotropic optical response. We
illustrated its usefulness by modeling the optical properties of
adsorbed dye layers on metallic nanoparticles, which are
relevant to a number of recent dye/plasmon coupling studies.
For this, we proposed a simple generalization of the dilute
effective medium theory to anisotropic cases. The resulting
theory provides an insight into dye-orientation effects on the
optical properties of dye-coated nanoparticles at low coverage.
To simplify the interpretations and discussions, we here
discussed the case where the plasmon and dye resonances do
not overlap, but the model would also readily apply to the
important case where those resonances interact. Another

Figure 4. Comparison with the microscopic model (MM). (top)
Surface-averaged local field enhancement factors: the peak at 430 nm
correspond to the main dipolar plasmon resonance for the silver
sphere in water, while the sharper 375 nm peak is the quadrupolar
plasmon resonance. (bottom) Differential absorption cross sections,
as predicted from the models considered here: full anisotropic Mie
solution (RD), thin-shell approximation (TASA) in the dilute
effective medium approximation, and microscopic model (MM).
The three orientations of Figure 2 are considered: random (*), out-
of-plane (⊥), and random in-plane (∥).
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natural extension of this work will be to incorporate local field
effects akin to the Clausius-Mossotti correction into the
anisotropic effective medium shell model. Dye−dye inter-
actions and orientation effects at high concentration (close to
monolayer coverage) and how they relate to plasmon
resonance coupling could then be studied in detail with
anisotropic Mie theory.
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