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Spheroidal harmonic expansions for the solution of Laplace’s equation
for a point source near a sphere
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We propose a powerful approach to solve Laplace’s equation for point sources near a spherical object. The
central new idea is to use prolate spheroidal solid harmonics, which are separable solutions of Laplace’s equation
in spheroidal coordinates, instead of the more natural spherical solid harmonics. Using electrostatics as an
example, we motivate this choice and show that the resulting series expansions converge much faster. This
improvement is discussed in terms of the singularity of the solution and its analytic continuation. The benefits of
this approach are further illustrated for a specific example: the calculation of modified decay rates of light emitters
close to nanostructures in the quasistatic approximation. We expect the general approach to be applicable with
similar benefits to the solution of Laplace’s equation for other geometries and to other equations of mathematical
physics.
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I. INTRODUCTION

Laplace’s equation is one of the most important partial
differential equations of physics and engineering. It arises
in many fields, including electromagnetism, classical gravity,
and fluid dynamics. It also has close links, through the
Laplacian operator, with other important differential equations
of physics, such as the wave equation and the diffusion
equation. Analytical solutions of Laplace’s equation, typically
obtained via the method of separation of variables, are
standard materials for physics textbooks [1]. The solution for
a point source located outside a sphere plays an especially
important role through its connection with the Green’s function
formalism [2].

We will here focus on electrostatics, but our results extend
to other applications of Laplace’s equation. The standard
electrostatics solution for a point source outside a dielectric
sphere is relatively straightforward and obtained as a multipole
expansion (infinite series) [2,3]. One important and often
overlooked property of those series is that they can be very
slowly convergent for sources close to the surface (often
the most relevant situation), as shown explicitly in Ref. [4].
Moroz recently revisited this problem by focusing specifically
on the decay rate of a dipole emitter near a sphere in the
quasistatic approximation. This involved calculation of the
reflected field at the dipole position (the self-field) and used
mathematical manipulations to express the series solution in
a more convergent form [5]. Lindell also approached this
problem from the point of view of image theory where the
outside potential is expressed as the potential of an “image”
line charge inside the sphere [6], but the resulting solution
involves an integral which must be computed numerically.

In this article, we propose and demonstrate an alternative
approach based on the use of spheroidal harmonics, which are
the separable solutions of Laplace’s equation in spheroidal
coordinates [1,2]. This choice may appear counterintuitive
for a spherical object, but we will show that the spheroidal
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harmonics are better suited to the singularities of the solu-
tion. We show that the spheroidal harmonic series solution
converges much faster than the standard spherical harmonic
series. We show that this idea is also applicable to dipolar
point sources of different orientations and derive new fast-
converging series expansions for the quasistatic modified
decay rates of emitters close to a sphere. We believe the
applicability of this approach could extend to many other
problems involving Laplace’s equation, to other geometries,
and to other equations of mathematical physics.

II. POINT CHARGE NEAR A DIELECTRIC SPHERE

To present our new approach, we will first focus on the
simplest case of a point charge near a dielectric sphere. As
illustrated in Fig. 1, we consider a point charge q located at
RP , on the z axis at a distance d from a sphere of radius a

(|RP | = RP = a + d). The relative dielectric permittivities of
the sphere and embedding medium are ε2 and ε1, respectively,
and their ratio is denoted ε = ε2/ε1 for convenience. Our
results will be illustrated for a dielectric sphere with ε = 2.25,
but similar conclusions are obtained for other values of ε. The
results are scale invariant; i.e., they only depend on d/a, and
we are particularly interested in situations where d/a � 1.

We seek the outside potential V (r), solution of Laplace’s
equation in the presence of this point charge. For convenience,
we write V = V̄ q/(4πε0ε1a) and work with the dimensionless
V̄ . The standard solution of this problem consists in expanding
the point charge potential V̄q as a series of regular solid
harmonics centered on the sphere [2],

V̄q = a

RP

∞∑
n=0

(
r

RP

)n

Pn(cos θ ) (r < RP ), (1)

where (r,θ,φ) are spherical coordinates and Pn are the Legen-
dre polynomials. The potential outside the sphere (r > a) is
written as V̄out = V̄q + V̄r . The “reflected” potential V̄r can be
derived by assuming a spherical solid harmonic expansion and
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FIG. 1. Schematic of the electrostatics problem under study: a
point charge q at a distance d from a sphere of radius a. The various
coordinate systems used in the solution are also illustrated: spherical
(r,θ,φ), offset spherical (r ′,θ ′,φ), and offset prolate spheroidal
(ξ̄ ,η̄,φ).

applying electrostatic boundary conditions on the surface [2],

V̄r = −
∞∑

n=0

βn

(
RI

r

)n+1

Pn(cos θ ), (2)

where RI = a2/RP and the adimensional sphere polarizabili-
ties are

βn = n(ε − 1)

n(ε + 1) + 1
. (3)

We also define β∞ = (ε − 1)/(ε + 1), which is related to the
response of a planar interface.1

As discussed in Refs. [4–6], the sum in Eq. (2) can be
very slowly convergent when evaluated at or in the vicinity
of the sphere surface (r ≈ a) for a point source close to
the sphere (d � a). The rate of convergence can be studied
by considering the the relative error eN in the partial series
(truncated at N terms) with respect to its converged value
(computed with enough terms to ensure it no longer depends
on the number of terms within double floating point precision),
explicitly for a general series

∑
n tn:

eN =
∣∣∣∣∣1 −

N∑
n=0

tn

/ ∞∑
n=0

tn

∣∣∣∣∣. (4)

This is shown explicitly in Fig. 2 for the series in Eq. (2)
for the potential at different points close to or on the sphere

1For a point charge near a planar interface, the reflected potential
is simply that of an image point charge located at the mirror image
position (with respect to the plane) and of amplitude q ′ = −β∞q.
The solution for the sphere reduces to that of the plane in the limit
d/a → 0, but even for d/a = 0.02, the sphere and plane solutions
still differ by ∼10%.

surface. For example, one needs to sum more than 1500 terms
in the series to obtain a converged solution (within the double-
precision accuracy of ∼10−15) of the potential on the sphere
surface when d/a = 0.02. This slow convergence also occurs
everywhere on the sphere surface, not just in the vicinity of
the point source.

In order to motivate our choice of working with prolate
spheroidal coordinates, we first derive a faster converging
formulation of the solution with spherical coordinates, where
the nature of the singularities of the solution becomes more
apparent. For this, we start from Eq. (2) and isolate the
dominant contribution for large n by writing

βn = β∞ − β∞
n(ε + 1) + 1

. (5)

Substituting back into Eq. (2), the second term gives a series
that converges faster and the first term gives a series for which
we recognize a closed-form analytical expression:2

−β∞
∞∑

n=0

(
RI

r

)n+1

Pn(cos θ ) = − β∞RI

|r − RI ẑ| . (6)

This can be viewed as the potential created by an image point
charge qI = −qβ∞(RI/a), located at a distance RI from the
origin on the z axis (point I; see Fig. 1). This is the same
image charge location as that used in the method of images
to solve the same problem for a perfect conductor [2,7]. The
solution then takes the form (the primed coordinates refer to
those centered at I):

V̄r = −β∞
RI

r ′ +
∞∑

n=0

β∞
n(ε + 1) + 1

(
RI

r

)n+1

Pn(cos θ ). (7)

The slow convergence of the series in Eq. (2) has been partially
removed by isolating and recognizing the analytical expression
for the image charge. Nevertheless, the convergence of the
series in Eq. (7) remains slow (Fig. 3). This approach can be
repeated to further improve the convergence. Isolating the next
term and recognizing its closed-form expression, we obtain
after manipulation (see Appendix A)

V̄r = − β∞
RI

r ′ + β∞
ε + 1

ln
r ′ − z′

r − z

+ εβ∞
ε + 1

∞∑
n=0

(
RI

r

)n+1
Pn(cos θ )

(n + 1)[n(ε + 1) + 1]
. (8)

As shown in Fig. 3, the convergence of Eq. (8) is again
improved, but still requires a large number of terms (∼800) to

2Equation (6) may be recognized as the expression for translation
of solid spherical harmonics along the z axis [2,7] and can be proved
using the generating function of the Legendre polynomials [8].
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FIG. 2. Convergence of the standard series solution [Eq. (2)] for a point charge at a distance of d = 0.02a or d = 0.12a from a dielectric
sphere of radius a (with ε = 2.25). Note that the results are scale independent. Relative errors in the partial sums are computed by comparing
the series with N terms to the same series with enough terms to have converged to double floating point precision (i.e., accurate to within
∼10−15). Errors are shown for the outside potential at different positions either along the z axis (a) or off axis for r = a + d (b). The noisy
appearance of the off-axis errors is due to the oscillations of the Legendre polynomials when cos θ �= 1.

reach double-precision accuracy. It is also interesting to note
that the second term in Eq. (8) exhibits a singularity on the
line segment OI; this term can be viewed as the potential of an
extended image source over this segment. In fact, the solution
of the problem within the method of images was previously
found to give [6]

V̄r = −β∞
RI

r ′ + β∞
ε + 1

∫ RI

0

(z̃/RI )ε/(ε+1)dz̃√
x2 + y2 + (z − z̃)2

, (9)

from which a line image charge over OI is also evident. This
extended line singularity found in both approaches provides
the motivation for our proposed new approach to the problem.

III. SPHEROIDAL HARMONIC SOLUTION

Instead of using a spherical harmonics expansion, we search
for a solution in a basis of spheroidal harmonics, namely,

V̄r =
∞∑

n=0

anQn(ξ̄ )Pn(η̄). (10)

Qn(ξ̄ )Pn(η̄) are irregular solid prolate spheroidal harmonics;
i.e., they are the standard separable solutions of Laplace’s
equation (where there is no φ dependence) in prolate
spheroidal coordinates, with Qn(ξ̄ ) the Legendre functions
of the second kind (see Appendix B for definition). ξ̄ and η̄ are
prolate spheroidal coordinates with focal points at O, center of
sphere, and I, position of the image charge. Explicitly, ξ̄ and
η̄ are

ξ̄ = r + r ′

RI

, η̄ = r − r ′

RI

. (11)

The “bar” notation is used here to emphasize the fact
that prolate spheroidal coordinates are traditionally defined
differently with O at the midpoint between the two foci [1].
We choose these coordinates because Qn(ξ̄ ) is then singular

exactly on the segment OI (ξ̄ = 1), where the singularity of
the solution occurs.

To determine the expansion coefficients an, we first need to
find the expansion for the irregular spherical solid harmonics
Pn(cos θ )/rn+1 in terms of the irregular prolate spheroidal
solid harmonics. Such expansions can be found in the literature
[9,10] in the case where the spherical harmonics center is in the
middle of the focal points used for the spheroidal coordinates.
In our case, however, the sphere center corresponds to one of
the focal points, so a new expression had to be derived. The
details are provided in Appendix C and we here state the final
result:

(
RI

r

)n+1

Pn(cos θ )

=
∞∑

k=n

(−1)n+k 2(2k + 1)(k + n)!

n!2(k − n)!
Qk(ξ̄ )Pk(η̄). (12)

One can then substitute this expansion into the original
solution [Eq. (2)], swap the order of the sums, and relabel the
indices n ↔ k, to obtain the coefficients an as

an = −2(2n + 1)
n∑

k=1

(−1)n+k (n + k)!

k!2(n − k)!
βk. (13)

For the problem at hand, it is actually beneficial to first isolate
the point singularity (image charge) identified earlier, since
it does not exhibit the same line singularity as found in the
spheroidal solid harmonics. We therefore look for a solution
of the form

V̄r = −β∞
RI

r ′ +
∞∑

n=0

bnQn(ξ̄ )Pn(η̄). (14)
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MAJIĆ, AUGUIÉ, AND LE RU PHYSICAL REVIEW E 95, 033307 (2017)

FIG. 3. Convergence of the improved series solutions for the outside potential at the surface (r = a) either close to the source (θ = 0, solid
lines) or at the opposite side of the sphere (θ = π , dashed lines) for a point charge at a distance d = 0.02a (a) or d = 0.12a (b). We compare
the standard solution [Eq. (2)] with the improved solutions with the image charge term [Eq. (7)] and with the logarithmic term [Eq. (8)]. The
new approach using a spheroidal harmonics expansion [Eq. (18)] is also compared to those and converges much faster, especially for sources
very close to the sphere. The inset in (b) depicts the region of divergence of the series for spherical (inside circle in red) and spheroidal (segment
OI in green) harmonics expansions.

As for an, the coefficients bn are obtained by substituting
Eq. (12) into the series in Eq. (7) and swapping the order
of the sums. We obtain

bn = β∞2(2n + 1)cn, (15)

with cn =
n∑

k=0

(−1)n+k

k(ε + 1) + 1

(n + k)!

k!2(n − k)!
. (16)

This expression is, however, not suitable for practical compu-
tations as large numerical errors appear in the sum at relatively
low n (≈20), but one can derive the following equivalent
expression (see Appendix D):

cn =
n∏

k=0

μ − k

μ + k
, where μ = 1

ε + 1
. (17)

With this expression, cn can be computed easily by recurrence.
The reflected potential is then

V̄r = −β∞
RI

r ′ + β∞
∞∑

n=0

2(2n + 1)cnQn(ξ̄ )Pn(η̄). (18)

The convergence of this series is compared in Fig. 3 to those
previously obtained, and the improvements are dramatic. It
should be noted that care should be taken in the computation
of the Legendre functions of the second kind, which were
computed using a backward recurrence and the modified Lentz
algorithm [11]. In the example of Fig. 3(a), where d/a = 0.02,
full accuracy is obtained for the surface potential close to
the point source with only ∼100 terms instead of ∼1600 for
the standard solution. The benefits are even more dramatic
elsewhere on the surface, with only 20 terms needed on the
other side of the sphere. The results of Fig. 3 were also
reproduced (not shown here) for many different values of ε,

including complex-valued, and almost identical graphs were
obtained for all of them.

To understand these improvements, we recognize that
Eq. (18) provides an analytic continuation of Eq. (8). Those
infinite series are strictly equivalent in the region where
they both converge, but their ranges of convergence are
different: Eq. (8) converges only for r > RI , while Eq. (18)
converges everywhere except on the segment OI. One naturally
expects that slow convergence of either series will occur near
the boundary of its region of convergence. For spheroidal
expansions, the point r = RP , θ = π is far from the segment
of divergence OI [see inset in Fig. 3(b)], and the series therefore
converges rapidly. For spherical expansions, this point is very
close to the sphere of divergence, and convergence is very slow.
The logarithmic term in Eq. (8) and previous studies using the
method of images [6] suggest that the analytic continuation
of the solution is singular only on the segment OI and the
divergence region cannot be further reduced. This suggests
that the spheroidal solid harmonics (centered on the segment
OI) are the most natural basis for this problem, which explains
the faster convergence even at points near the singularity at I.

IV. POINT DIPOLE AND MODIFIED DECAY RATES
IN THE QUASISTATIC APPROXIMATION

To illustrate the usefulness of the proposed method,
we now discuss an application that is relevant to current
areas of research involving emitters on nanoparticles, in-
cluding nanophotonics, plasmonics, and surface-enhanced
spectroscopy [4]. For a nanostructure that is much smaller
than the light wavelength, its optical response is well described
by a quasistatic approximation, which consists in solving the
corresponding electrostatics problem (i.e., taking the limit
of a vanishing wave number in Helmholtz’ equation, which
reduces to Laplace’s equation), but still using the material’s
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FIG. 4. (a) Spectral variation of the decay rate modification in the electrostatics approximation for a dipole perpendicular to a gold sphere
of radius a = 25 nm embedded in water (ε1 = 1.332), at a distance d = 0.5 or 3 nm from the surface. The dielectric function for gold is taken
from Ref. [17]. (b) Convergence of the standard and improved series solutions for the modified decay rates 	⊥/	0 at wavelength λ = 633 nm
(where ε = −6.5 + 0.67i) and d = 0.5 nm (i.e., d/a = 0.02). The spheroidal expansion [Eq. (21)] requires much fewer terms for accurate
results. Almost identical results are obtained for the parallel dipole (not shown).

dielectric function corresponding to the optical frequency. The
electrostatic solution for a point dipole near a dielectric or
metallic object can be used to calculate the modified decay
rate of a single emitter near a nanoparticle. A number of
recent studies have been dedicated to this aspect [12,13]. In this
section, we show how the new approach can be used in this
context to obtain new series expressions for the quasistatic
modified decay rates near a sphere, which converge much
faster than those proposed to date [5].

We consider a dipole p located at a distance d from
the sphere on the z axis. The dimensionless potential V̄ is
now defined as V = V̄ p/(4πε0ε1aRP ) (where p = |p|) for
convenience. For a perpendicular dipole (oriented along z),
the reflected potential can be expressed using solid spheroidal
harmonics expansions as (see Appendix E for details)

V̄⊥ = β∞
R2

I z
′

r ′3 + εβ∞
ε + 1

RI

r ′

− εβ∞
ε + 1

∞∑
n=0

2(2n + 1)cnQn(ξ̄ )Pn(η̄). (19)

The first two terms correspond to an image dipole and image
point charge, respectively, while the series exhibit a line
singularity over the segment OI as before.

The modified decay rate 	 for a dipolar emitter can be
deduced from its self-field Esf as [3,4,14–16]

	

	0
= 1 + 6πε0ε1

k3
1

Im(p∗ · Esf)

|p|2 , (20)

where 	0 is the normal decay rate in the embedding medium,
k1 = (2π/λ)

√
ε1 is the wave-number, and Esf is the electric

field at the dipole position resulting from the presence of
the sphere nearby. In the quasistatic approximation, valid
for spheres much smaller than the wavelength, the field
solution close to the sphere can be approximated by the
corresponding electrostatics solution using the wavelength-
dependent dielectric function (which may be complex). The
self-field Esf can then be obtained by evaluating the reflected
field Er = −∇Vr at the dipole position. For a dipole that is
either perpendicular (⊥) or parallel (‖) to the sphere, we obtain
(see Appendixes E and F)

	⊥
	0

= 1 + 3

2(k1a)3
Im

[
β∞

(
2

δ3
P

+ ε

ε + 1

1

δ2
P

{
1 − 1

δP (1 + δP )

∞∑
n=0

(2n + 1)(n + 1)cn[ξ̄P Qn(ξ̄P ) − Qn+1(ξ̄P )]

})]
,

	‖
	0

= 1 − 3

2(k1a)3
Im

{
β∞

[
1

δ3
P

− 2

ε + 1

1√
δP (1 + δP )

∞∑
n=1

(2n + 1)(cn − 1)Q1
n(ξ̄P )

]}
. (21)

where we have defined δP = (RP /a)2 − 1 (δP � 1 when the
dipole is close to the surface), ξ̄P = 1 + 2δP , and Qm

n are
the associated Legendre functions of the second kind. Note
that β∞ and the coefficients cn in the series depend on ε and
may be complex; they contribute to the material dependence
of the whole expression. As an example, we consider a

25-nm-radius gold nanosphere in water. Figure 4(a) shows
the wavelength dependence of the modified decay rate for a
perpendicular dipole at a distance d = 0.5 and 3 nm from the
surface. The convergence of the new formula [Eq. (21)] is
also compared in Fig. 4(b) to that of the standard expression
obtained from spherical harmonics expansions [4,5]. Much
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faster convergence is seen, highlighting again the benefits of
the approach.

V. CONCLUSION AND OUTLOOK

Using electrostatics as an example, we have shown that
spheroidal harmonics expansions are better suited than spher-
ical harmonics to solving Laplace’s equation in the presence
of point sources located close to spherical boundaries. This
counterintuitive conclusion can be understood when consider-
ing that the singularity of the solution occurs on a line segment
in such problems. A judicious choice of spheroidal solid
harmonics ensures that the basis functions in the expansion
have a singularity matching the one of the solution. This is
not possible with spherical solid harmonics, which all exhibit
a point rather than segment singularity.

This argument indicates that our proposed approach would
be applicable to many related problems. We have here
considered point charges and point dipoles in electrostatics,
and higher-order multipole point sources near a sphere could
be studied with minor modifications. Beyond those examples,
the method could be adapted to study the potential solution
inside the sphere, problems with different boundary conditions
on the sphere surface, and similar problems in other fields
using Laplace’s equation. Spheroidal harmonics expansions
could also provide new approaches to solve Laplace’s equation
with other geometries, for example, interacting spheres (where
one sphere can be viewed as a source for the other) or
of a sphere near an infinite plane. We also envisage that
our arguments could be extended to other equations of
mathematical physics, such as the Helmholtz equation. The
full-wave series solution for a dipole near a sphere is also
slowly convergent but the problem becomes more acute
because numerical problems arise in computing those series
for large n; the terms in the series include spherical Bessel
functions of k1r whose values can commonly reach beyond
double-precision arithmetic at large orders. The solutions
cannot therefore be easily computed numerically for dipoles
close to the sphere. Spheroidal harmonics expansions (which
may involve the standard spheroidal wave functions [18] or
alternative definitions) may alleviate such issues. Although
all those extensions will require further developments, the
results presented in this article provide a vivid demonstration
of the usefulness of spheroidal coordinates in problems with
symmetry of revolution where they may have been overlooked
so far.

APPENDIX A: PROOF OF EQ. (8), CLOSED-FORM
EXPRESSION FOR LOGARITHMIC TERM

The same approach as carried out to find the image charge
term [Eq. (7)] can be followed to obtain the next dominant
term. We isolate the next dominant term in βn by writing

n

n(ε + 1) + 1
= 1

ε + 1
− 1

(ε + 1)2

1

n + 1

− ε

(ε + 1)2

1

(n + 1)[n(ε + 1) + 1]
. (A1)

The choice of factor 1/(n + 1) in the second term, instead
of for example 1/n, may look arbitrary but will simplify the

calculations. When substituting back Eq. (A1) into Eq. (2), the
first term gives the same image charge term as found in Eq. (7).
The analytic expression for the sum over the second term in
Eq. (A1) is less obvious. It involves the series

∞∑
n=0

(
RI

r

)n+1
Pn(cos θ )

n + 1
. (A2)

To calculate it, we start from the generating function of the
Legendre polynomials:

1√
1 − 2xt + t2

=
∞∑

n=0

tnPn(x), (|t | < 1). (A3)

Integrating with respect to t ,

ln

∣∣∣∣∣ t − x + √
1 − 2xt + t2

1 − x

∣∣∣∣∣ =
∞∑

n=0

tn+1

n + 1
Pn(x), (A4)

for |t | < 1. Setting x = cos θ and t = RI/r , we obtain, after
simplifications,

∞∑
n=0

(
RI

r

)n+1
Pn(cos θ )

n + 1
= ln

r ′ − z′

r − z
(r > RI ), (A5)

where primed coordinates refer to the coordinates in the frame
centered on point I:

ρ ′ = ρ = r sin θ, z′ = z − RI ,
(A6)

r ′ =
√

ρ2 + (z − RI )2, θ ′ = cos−1 z′

r ′ .

Equation (8) then follows for r > RI by substituting
Eq. (A1) into Eq. (2) and using the analytic forms of the
series given in Eqs. (6) and (A5).

It is also interesting to note that the logarithmic term found
here is directly related to the prolate solid spheroidal harmonic
for n = 0:

Q0(ξ̄ )P0(η̄) = 1

2
ln

ξ̄ + 1

ξ̄ − 1
= 1

2
ln

r ′ − z′

r − z
. (A7)

The latter equality is not obvious but can be proved by inverting
the definitions of ξ̄ and η̄:

r = RI

2
(ξ̄ + η̄); r ′ = RI

2
(ξ̄ − η̄);

(A8)

z = RI

2
(ξ̄ η̄ + 1); z′ = RI

2
(ξ̄ η̄ − 1).

Then we have

r ′ − z′

r − z
= (ξ̄ − η̄) − (ξ̄ η̄ − 1)

(ξ̄ + η̄) − (ξ̄ η̄ + 1)
= (ξ̄ + 1)(η̄ − 1)

(ξ̄ − 1)(η̄ − 1)
= ξ̄ + 1

ξ̄ − 1
.

(A9)

This link [Eq. (A7)] provides further motivation for the use of
spheroidal solid harmonics expansions.

APPENDIX B: DEFINITION AND COMPUTATION
OF THE LEGENDRE FUNCTIONS OF THE

FIRST AND SECOND KINDS

The associated Legendre functions of the first kind are
widely used, but there are different conventions. We used the
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following definition (for m � 0 and x ∈ R):

P m
n (x) = |x2 − 1|m/2 dmPn(x)

dxm
. (B1)

Note that it is common to add an extra (−1)m to this definition
when |x| � 1, for example, when x = cos θ for the definition
of spherical harmonics [7]. Our convention is arguably more
convenient when also considering x > 1, which is the case
when working with the regular solid spheroidal harmonics
[which contain P m

n (ξ )].
The P m

n (x) are computed by forward recurrence on n (for
a fixed m) using the relation

(n − m + 1)P m
n+1 = (2n + 1)xP m

n − (n + m)P m
n−1, (B2)

and the initial conditions

P m
m (x) = (2m − 1)!!|1 − x2|m/2,

(B3)
P m

m+1(x) = (2m + 1)xP m
m (x).

The associated Legendre functions of the second kind are much
less common. They are defined as follows for x ∈ R [9]. For
m = 0, we have

Q0(x) = 1

2
ln

∣∣∣∣x + 1

x − 1

∣∣∣∣, Q1(x) = xQ0(x) − 1, (B4)

and as for the Legendre polynomials,

(n + 1)Qn+1 = (2n + 1)xQn − nQn−1. (B5)

However, stable computation of Qn(x) is more complicated as
this simple forward recurrence becomes quickly numerically
unstable as n increases. Instead, we have therefore used a stable
backward recurrence described in Ref. [11], which is based on
the modified Lentz algorithm.

For m > 0, similarly to the functions of the first kind, we
have

Qm
n (x) = |x2 − 1|m/2 dmQn(x)

dxm
, (B6)

and Qm
n obeys exactly the same recurrence as in Eq. (B2).

Note also that P 1
n and Q1

n can be easily derived from the
m = 0 functions from

Q1
n

P 1
n

(x) = n√
|x2 − 1|

[
x

Qn

Pn

(x) − Qn−1

Pn−1
(x)

]
(n � 1).

(B7)

APPENDIX C: EXPANSION OF SPHERICAL SOLID
HARMONICS IN TERMS OF SPHEROIDAL

SOLID HARMONICS

Such expansions can be found in the literature [9,10] in
the case where the spherical harmonics center is in the middle
of the focal points used for the spheroidal coordinates. There
are four main formulas, corresponding to the expansion of
regular (irregular) spherical solid harmonics in terms of regular
(irregular) spheroidal harmonics and vice versa. Two of them

are reproduced below [9,10],

P m
n (ξ )P m

n (η) =
n∑

k=m

n+k even

(−)(n−k)/2(n + k − 1)!!

(n − k)!!(k + m)!

× (n + m)!

(n − m)!

( r

c

)k

P m
k (cos θ ), (C1)

(c

r

)n+1
P m

n (cos θ )

=
∞∑

k=n

n+k even

(−)(n−k)/2+m(2k + 1)

× (n + k − 1)!!

(k − n)!!(n − m)!

(k − m)!

(k + m)!
Qm

k (ξ )P m
k (η), (C2)

where (−)n is shorthand for (−1)n. The foci are located at
z = ±c on the z axis and the prolate spheroidal coordinates
for those focal points are given by (we use the definition of
Ref. [1])

ξ =
√

r2 + 2cz + r2 + √
r2 − 2cz + r2

2c
,

η =
√

r2 + 2cz + r2 − √
r2 − 2cz + r2

2c
.

In our case, however, the sphere center corresponds to one of
the focal points, and the other one is a z = RI , so the spheroidal
coordinates are given as

ξ̄ = r + √
r2 − 2zc + c2

c
, η̄ = r − √

r2 − 2zc + c2

c
,

with c ≡ RI . We therefore derived new expansions between
spherical and the corresponding offset spheroidal harmonics:

P m
n (ξ̄ )P m

n (η̄) = (n + m)!

(n − m)!

n∑
k=m

(−)n+k

k!(k + m)!

× (n + k)!

(n − k)!

( r

c

)k

P m
k (cos θ ), (C3)

(c

r

)n+1
P m

n (cos θ ) = 2

n!(n − m)!

∞∑
k=n

(−)n+k+m(2k + 1)

× (k+n)!

(k−n)!

(k−m)!

(k+m)!
Qm

k (ξ̄ )P m
k (η̄). (C4)

The relation we use in Sec. III [Eq. (12)] is Eq. (C4), with
c ≡ RI and m = 0. Equation (C3) will be needed here only in
the proof of Eq. (C4).

Proof of Eq. (C3). Consider the expansion of regular solid
prolate harmonics P m

n (ξ̄ )P m
n (η̄) exp(imφ) in terms of regular

solid spherical harmonics rkP m
k (cos θ ) exp(imφ), which must

exist since the solid harmonics are a basis for regular solutions
to Laplace’s equation. We can assume the m are the same on
both sides since φ is the same in both coordinate systems and
exp(imφ) are independent functions. So we write

P m
n (ξ̄ )P m

n (η̄) =
∞∑

k=0

αm
nk

( r

c

)k

P m
k (cos θ ). (C5)
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The associated Legendre functions (see definitions in Ap-
pendix B) can be written as

P m
n (x) = |1 − x2|m/2�m

n (x),

where �m
n (x) = dm

dxm
Pn(x). (C6)

Using the relation

(1 − η̄2)(ξ̄ 2 − 1) = 4r2

c2
sin2 θ, (C7)

we deduce

P m
n (ξ̄ )P m

n (η̄) =
(

2r

c

)m

sinm θ�m
n (ξ̄ )�m

n (η̄). (C8)

Equation (C5) can therefore be written in terms of �m
n as

�m
n (ξ̄ )�m

n (η̄) =
∞∑

k=m

αm
nk

( r

c

)k−m 1

2m
�m

k (cos θ ). (C9)

The coefficients αm
nk can be determined by evaluating the

expansion for θ = 0 and r > c,z > c, which implies η̄ = 1
and r = c(ξ̄ + 1)/2. Using the special value

�m
n (1) = 1

2m

(n + m)!

m!(n − m)!
, (C10)

we obtain

�m
n (ξ̄ ) =

∞∑
k=0

αm
nk

(k + m)!(n − m)!

(k − m)!(n + m)!

1

2m

(
ξ̄ + 1

2

)k−m

. (C11)

We then use the following identity for the Legendre polyno-
mials:

Pn(x) =
n∑

k=0

(−)n+k (n + k)!

k!2(n − k)!

(
x + 1

2

)k

. (C12)

By differentiating m times with respect to x, we get

�m
n (x) =

n∑
k=m

(−)n+kk!

2m(k − m)!

(n + k)!

k!2(n − k)!

(
x + 1

2

)k−m

. (C13)

From this and Eq. (C11), we identify

αm
nk = (n + m)!

(n − m)!
(−)n+k (n + k)!

k!(n − k)!(k + m)!
(C14)

for m � k � n, 0 otherwise,

which proves Eq. (C3). Note that since the expansion is finite,
it converges everywhere and is valid in all space. �

Proof of Eq. (C4). To prove Eq. (C4), we will make use of
the expansions of Green’s function in terms of both spherical
and spheroidal solid harmonics. The expansion in terms of
spheroidal harmonics can be found, for example, in Ref. [9]
for standard prolate spheroidal coordinates and it can be
adapted to our modified coordinates with a simple scaling
factor of 2, which comes from shrinking the focal length of
the coordinates from 2c to c. For two points r1 and r2 with
spheroidal coordinates denoted (ξ̄1,η̄1,φ1) and (ξ̄2,η̄2,φ2), we
have when ξ̄1 < ξ̄2

1

|r1 − r2| =
∞∑

k=0

2
2k + 1

c

k∑
m=0

(−)m(2 − δm0)
(k − m)!2

(k + m)!2

×P m
k (ξ̄1)P m

k (η̄1)Qm
k (ξ̄2)P m

k (η̄2) cos m(φ1 − φ2).

(C15)

We can write a similar expansion with spherical solid harmon-
ics [7] when r1 < r2,

1

|r1 − r2| =
∞∑

n=0

rn
1

rn+1
2

n∑
m=0

(2 − δm0)
(n − m)!

(n + m)!

×P m
n (cos θ1)P m

n (cos θ2) cos m(φ1 − φ2),

(C16)

where (r1,θ1,φ1) and (r2,θ2,φ2) are the spherical coordinates
of r1 and r2. We then substitute Eq. (C3) for r1 into Eq. (C15)
to express it as an expansion on the same spherical harmonics
basis,

1

|r1−r2| =
∞∑

k=0

2
2k + 1

c

k∑
m=0

(−)m(2−δm0)
(k − m)!2

(k + m)!2

[
(k + m)!

(k − m)!

k∑
n=m

(−)k+n

n!(n + m)!

(k + n)!

(k − n)!

rn
1

cn
P m

n (cos θ1)

]
Qm

k (ξ̄2)P
m
k (η̄2)cos m(φ1−φ2)

=
∞∑

n=0

n∑
m=0

∞∑
k=n

2
2k + 1

c
(2 − δm0)

(−)n+k+m(k + n)!

(k − n)!n!(n + m)!

(k − m)!

(k + m)!

rn
1

cn
P m

n (cos θ1)Qm
k (ξ̄2)P m

k (η̄2) cos m(φ1 − φ2), (C17)

where we have swapped the order of the sums, first
∑k

m=0

∑k
n=m = ∑k

n=0

∑n
m=0 and then

∑∞
k=0

∑k
n=0 = ∑∞

n=0

∑∞
k=n.

Because the functions rn
1 P m

n (cos θ1) cos m(φ1 − φ2) are linearly independent, we can equate all terms with same n and m in
Eqs. (C16) and (C17) to obtain Eq. (C4). This expansion is valid everywhere except on the line segment between the foci at
z = 0 and z = c. �
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APPENDIX D: SIMPLIFICATION OF COEFFICIENTS cn—PROOF OF EQ. (17)

We recall the definition of cn [Eq. (16)] for n � 0:

cn =
n∑

k=0

(−)n+k

k(ε + 1) + 1

(n + k)!

(n − k)!k!2

= μ

n∑
k=0

(−)n+k

k + μ

(n + k)!

(n − k)!k!2
with μ = 1

ε + 1
. (D1)

We want to prove that
n∑

k=0

(−)k

k + μ

(n + k)!

(n − k)!k!2
= (−)n

μ

n∏
k=0

μ − k

μ + k
= (1 − μ)(2 − μ) · · · (n − μ)

μ(μ + 1)(μ + 2) · · · (μ + n)
(D2)

for a general μ. We first convert the left-hand side into a single fraction:

cn

μ
= 1

μ
− (n + 1)n

μ + 1
+ (n + 2)(n + 1)n(n − 1)

(μ + 2)2!2
− (n + 3)(n + 2)(n + 1)n(n − 1)(n − 2)

(μ + 3)3!2
+ · · · + (−)n

2n(2n − 1) · · · 1

(μ + n)n!2

= (μ+ 1) · · · (μ+ n) − (n+ 1)nα(μ+ 2)(μ+ 3) · · · (μ+ n) + 1
2!2 (n+ 2)(n+ 1)n(n − 1)μ(μ+ 1)(μ+ 3) · · · (μ+ n) − · · ·

μ(μ+ 1)(μ+ 2) · · · (μ+ n)
.

Both sides of Eq. (D2) are then fractions with the same
denominator μ(μ + 1)(μ + 2) · · · (μ + n), and their numer-
ators are polynomials of μ of degree n. These will be equal
if they are equal at n + 1 different points. Define f (μ) as
the left-hand side numerator and g(μ) as the right-hand side
numerator. Choose the n + 1 points to be at μ = −q, where
q = 0,1,2, . . . n. For g(μ) it is easy to show that

g(−q) = (1 + q)(2 + q) · · · (n + q) = (n + q)!

q!
.

For f (μ), note that it is composed of a sum of terms
of the form [(−)b/b!2]μ(μ + 1) · · · (μ + b − 1)(μ + b +
1) · · · (μ + n) × (n + b)(n + b − 1) · · · (n − b + 1) for some
b ∈ {0,1, . . . ,n}. Setting μ = −q, all terms vanish except the
(q + 1)th one. This term is

f (−q) = (−)q
1

q!2
(n + q)(n + q − 1) · · · (n − q + 1)

× (−q)(−q − 1) · · · (−) × (1)(2) · · · (n − q)

= (n + q)!

q!
.

This applies to all n + 1 values of q, so f (μ) = g(μ), which
proves Eqs. (D2) and (17). �

APPENDIX E: PERPENDICULAR DIPOLE
NEAR A SPHERE

1. Standard solution in spherical coordinates

We consider a dipole p = pẑ located at RP , on the z

axis at a distance d from a sphere centered at the origin
(i.e., |RP | = R = a + d). For convenience, the dimensionless
potential V̄⊥(r) is defined as V⊥ = V̄⊥p/(4πε0ε1aRP ). The
standard solution of this problem consists of expanding the
dipole potential V̄dip−⊥ as a series of regular solid harmonics

centered at the origin:

V̄dip−⊥ = aRP

z − RP

|r − RP ẑ|3

= − a

RP

∞∑
n=0

(n + 1)

(
r

RP

)n

Pn(cos θ ) (r < RP ).

(E1)

The potential outside the sphere is V̄out−⊥ = V̄dip−⊥ + V̄⊥ with
the reflected potential V̄⊥(r) [2],

V̄⊥ =
∞∑

n=1

(n + 1)βn

(
RI

r

)n+1

Pn(cos θ ), (E2)

where βn are the adimensional sphere polarizabilities defined
in Eq. (3).

The electrostatic field derived from this potential can be
used to calculate the quasistatic limit of the decay rate of a
radiating dipole. It can be obtained from

E⊥(r) = −∇V⊥ = −∂V⊥
∂r

r̂ − 1

r

∂V⊥
∂θ

θ̂ − 1

r sin θ

∂V⊥
∂φ

φ̂.

(E3)

This gives

E⊥ = E0

∞∑
n=1

(n + 1)βn

(
a2

RP r

)n+2

×
{

(n + 1)Pn(cos θ )r̂ − d

dθ
[Pn(cos θ )]θ̂

}
, (E4)

with E0 = p

4πε0ε1a3
.

The self-field at the dipole position (r = RP , θ = 0) is then

Esf−⊥ = E0

∞∑
n=1

(n + 1)2βn

(
a2

R2
P

)n+2

ẑ. (E5)
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From this, we can use Eq. (21) to deduce the modified decay
rate in the electrostatics approximation [4,5]:

	⊥
	0

= 1 + 3

2(k1a)3

∑
n=1

(n + 1)2Im(βn)

(
a2

R2
P

)n+2

. (E6)

Like with the point charge, we want to improve the rate of
convergence of these series by extracting image terms and then
reformulating the expansion in terms of spheroidal harmonics.

2. Analytic expressions for image sources

We start from the reflected potential for a perpendicular
dipole given in Eq. (E2). Writing βn explicitly, it can be
rewritten as

V̄⊥ = (ε − 1)
∞∑

n=0

n(n + 1)

n(ε + 1) + 1

(
RI

r

)n+1

Pn(cos θ ). (E7)

We then isolate the first two dominant terms in the fraction (as
n → ∞):

n(n + 1)

n(ε + 1) + 1
= n

ε + 1
+ ε

(ε + 1)2

− ε

(ε + 1)2[n(ε + 1) + 1]
. (E8)

The sum over the second term on the right-hand side in Eq. (E8)
is the same as found for the point charge [Eq. (6)]. It can be
evaluated analytically and corresponds to the potential created
by an image point charge located at I.

A similar expression exists for the sum over the first term.
It can be obtained by differentiating Eq. (6) with respect to z.
First note that for n � 0

∂

∂z

Pn(cos θ )

rn+1
= −(n + 1)

Pn+1(cos θ )

rn+2
. (E9)

Then by applying RI∂z to both sides of Eq. (6) and reindexing
the sum from n to n − 1 we obtain

∞∑
n=0

n

(
RI

r

)n+1

Pn(cos θ ) =
(

RI

r ′

)2

cos θ ′ = R2
I

z′

r ′3 , (E10)

which is proportional to the potential of an image dipole
located at I oriented along z [7] and provides an analytic
expression for the sum over the first term on the right-hand
side of Eq. (E8). By substituting Eq. (E8) into Eq. (E7) and

using the analytic forms of the series given in Eqs. (6) and
(E10), we obtain

V̄⊥ = β∞
R2

I z
′

r ′3 + εβ∞
ε + 1

RI

r ′

− εβ∞
(ε + 1)

∞∑
n=0

1

n(ε + 1) + 1

(
RI

r

)n+1

Pn(cos θ ).

(E11)

The same approach can be followed to obtain the next image
source by splitting off the next leading order [1/(n + 1)
dependence] of βn. In fact, this term is the same logarithmic
source that was obtained for the point charge. Because it is
singular on the segment OI, we do not separate it and include
it in the expansion in terms of spheroidal harmonics.

3. New approach with spheroidal harmonics

Following the same logic as in Sec. III for a point charge,
we search for an equivalent solution where we keep the image
point source terms (there are two of them here) and express
the rest as a spheroidal solid harmonics expansion:

V̄⊥ = R2
I β∞

z′

r ′3 + εβ∞
ε + 1

RI

r ′ +
∑
n=0

dnQn(ξ̄ )Pn(η̄). (E12)

The coefficients dn are again obtained by substituting Eq. (12)
into the series in Eq. (E11) and swapping the order of the sums,

dn = −β∞
ε

ε + 1
2(2n + 1)

n∑
k=0

(−1)n+k

k(ε + 1) + 1

(n + k)!

k!2(n − k)!

= −β∞
ε

ε + 1
2(2n + 1)cn, (E13)

where cn has been defined in Eqs. (16) and (17).
The new potential solution then takes the form

V̄⊥ = β∞R2
I

z′

r ′3 + εβ∞
ε + 1

RI

r ′

− 2
εβ∞
ε + 1

∞∑
n=0

(2n + 1)cnQn(ξ̄ )Pn(η̄). (E14)

4. Electric field and modified decay rate with new formulation

From this latest expression, we can deduce a faster
converging form of the electric field in terms of spheroidal
harmonics. Note that multiple coordinates can be used (r , θ ,
r ′, θ ′, ξ̄ , η̄) to express the field in a more compact form:

E⊥ = E0β∞

{(
2
R3

I

r ′3 cos θ − 3
R4

I r

r ′5 sin2 θ

)
− ε

ε + 1

R2
I

r ′3 (RI cos θ − r) − 2ε

ε + 1

RI

r

∞∑
n=0

(2n + 1)(n + 1)cn

×
[
Qn(ξ̄ )Pn(η̄) + Qn(ξ̄ )Pn+1(η̄) − Qn+1(ξ̄ )Pn(η̄)

ξ̄ − η̄

]}
r̂ + E0β∞ sin θ

(
R3

I (r2 + RIz − 2R2
I )

r ′5 + ε

ε + 1

R3
I

r ′3

− 2ε

ε + 1

RI

r
sin θ

∞∑
n=0

(2n + 1)(n + 1)cn

{
Qn(ξ̄ )Pn(η̄) cos θ

sin2 θ
+ r

r ′

[
Qn(ξ̄ )Pn+1(η̄)

η̄2 − 1
− Qn+1(ξ̄ )Pn(η̄)

ξ̄ 2 − 1

]})
θ̂ . (E15)
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The self-field Esf−⊥ is then obtained by evaluating Eq. (E15)
at the dipole position, whose coordinates are

r = RP , θ = 0,

r ′ = RP − RI = RIδP , θ ′ = 0,

ξ̄ = ξ̄P = 2
R2

P

a2
− 1 = 1 + 2δP , η̄ = 1,

where δP = R2
P

a2
− 1.

Note that the adimensional parameter δP > 0 becomes small
when the dipole is close to the surface. From Esf−⊥, we then
deduce the expression for the modified decay rate given in
Eq. (21).

APPENDIX F: PARALLEL DIPOLE NEAR A SPHERE

In this section, we adapt the derivations presented for the
perpendicular dipole to the case of a parallel dipole. The
main difference is that all spherical and spheroidal harmonic
expansions now contain Legendre functions P m

n , Qm
n , with

m = 1, instead of m = 0 for perpendicular dipoles.

1. Solution in spherical coordinates

The standard solution of this problem consists of expanding
the dipole potential as a series of regular solid harmonics
centered at the origin. For a dipole along x, located on the
z axis at z = RP , we have [analogous to Eq. (E1)]

V̄dip−‖ = aRP x

|r − RP ẑ|3

= a

RP

∞∑
n=1

(
r

RP

)n

P 1
n (cos θ ) cos φ (r < RP ).

(F1)

The solution of the problem outside the sphere (r > a) is then
given by V̄out−|| = V̄dip−‖ + V̄‖, with the reflected potential V̄‖
given by [2]

V̄‖ = −
∞∑

n=1

βn

(
RI

r

)n+1

P 1
n (cos θ ) cos φ, (F2)

where βn are the adimensional sphere polarizabilities as
defined in Eq. (3).

The reflected electric field outside the sphere is then

E‖ = E0

∞∑
n=1

βn

(
RI

r

)n+2{
− (n + 1)P 1

n (cos θ ) cos φr̂

+ d

dθ

[
P 1

n (cos θ )
]

cos φθ̂ − P 1
n (cos θ )

sin θ
sin φφ̂

}
, (F3)

where E0 = p/(4πε0ε1a
3). To calculate the self-field Esf−‖

(at r = RP , θ = 0), we need to take the limit as θ → 0. We
use the equalities

P 1
n (1) = 0,

lim
θ→0

{
d

dθ

[
P 1

n (cos θ )
]} = lim

θ→0

[
P 1

n (cos θ )

sin θ

]
= n(n + 1)

2
,

(F4)

and

x̂ = sin θ cos φr̂ + cos θ cos φθ̂ − sin φφ̂ (F5)

to obtain

Esf−‖ = E0

∞∑
n=1

n(n + 1)

2
βn

(
a2

R2
P

)n+2

x̂. (F6)

The modified decay rate is therefore

	‖
	0

= 1 + 3

4(k1a)3

∞∑
n=1

n(n + 1)Im(βn)

(
a2

R2
P

)n+2

. (F7)

2. Analytic expressions for image terms

We now come back to the potential [Eq. (F2)]. Following
the same arguments as for the perpendicular dipole, one can
recognize closed-form expressions for the first few dominant
terms. βn can be split and analytic expressions for the series
can be identified. Explicitly,

n

n(ε + 1) + 1
= 1

ε + 1
− 1

(ε + 1)2

{
1

n
+ 1

n[n(ε + 1) + 1]

}
.

(F8)

The first term results in the series
∞∑

n=1

(
RI

r

)n+1

P 1
n (cos θ ) cos φ = R2

I

x ′

r ′3 , (F9)

where we have recognized the expansion of a dipole offset
along the z axis (and located at z = RI ). This is the image
dipole, whose orientation is in this case opposite to the real
dipole.

The second term gives the series
∞∑

n=1

1

n

(
RI

r

)n+1

P 1
n (cos θ ) cos φ. (F10)

In contrast with the case of a perpendicular dipole where an
image point charge was identified, it is not straightforward here
to recognize an analytic expression. To develop this further,
we will use (for n � 1)

P 1
n (cos θ ) = n

sin θ
[− cos θPn(cos θ ) + Pn−1(cos θ )]. (F11)

We then have
∞∑

n=1

1

n

(
RI

r

)n+1

P 1
n (cos θ ) cos φ

= cos φ

sin θ

∞∑
n=1

(
RI

r

)n+1

(Pn−1 − cos θPn)

= cos φ

sin θ

[
RI

r

∞∑
n=0

(
RI

r

)n+1

Pn − cos θ

∞∑
n=1

(
RI

r

)n+1

Pn

]

= cos φ

sin θ

[
RI

r

RI

r ′ − cos θ

(
RI

r ′ − RI

r

)]
using Eq. (6)

= RI cos φ

r sin θ
(cos θ − cos θ ′) since cos θ ′ = r cos θ − RI

r ′

= RIx

ρ2
(cos θ − cos θ ′). (F12)
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Note that the above expression is singular on the line from O to
I, but converges to a finite value elsewhere even on the z axis.

Putting those results together, and using x ′ = x, we have
for the potential

V̄‖ = − β∞
R2

I x

r ′3 − β∞
ε + 1

RIx(cos θ ′ − cos θ )

r2 sin2 θ

− β∞ cos φ

ε + 1

∞∑
n=1

(
RI

r

)n+1
P 1

n (cos θ )

n[n(ε + 1) + 1]
. (F13)

3. New approach with spheroidal harmonics

The main difference with the perpendicular dipole is that
only the first dominant analytic term in the expression above
is a point singularity. Since the second term exhibits the
line singularity from O to I, there is no reason to isolate it
when looking for the expansion in spheroidal harmonics. We

therefore start from the potential with the image dipole term
only, namely,

V̄‖ = −β∞
R2

I x

r ′3 + β∞ cos φ

∞∑
n=1

(
RI

r

)n+1
P 1

n (cos θ )

n(ε + 1) + 1
.

(F14)

This can then be converted into a spheroidal solid harmonics
expansion using Eq. (C4) for m = 1, which reads(

RI

r

)n+1

P 1
n (cos θ ) = − 2

∞∑
k=n

(−)n+k

n!(n − 1)!

(k + n)!

(k − n)!

× 2k + 1

k(k + 1)
Q1

k(ξ̄ )P 1
k (η̄). (F15)

The series in the previous equation for V̄‖ then reads

∞∑
n=1

(
RI

r

)n+1
P 1

n (cos θ )

n(ε + 1) + 1
= −2

∞∑
n=1

2n + 1

n(n + 1)

n∑
k=1

(−)n+kk

kε + k + 1

(n + k)!

k!2(n − k)!
Q1

n(ξ̄ )P 1
n (η̄). (F16)

Here the order of summation was swapped then the indices relabeled (n ↔ k).
Using the decomposition

(ε + 1)
k

kε + k + 1
+ 1

kε + k + 1
= 1, (F17)

we also obtain the following relation:

(ε + 1)
n∑

k=0

(−)n+kk

k(ε + 1) + 1

(n + k)!

k!2!(n − k)!
+

n∑
k=0

(−)n+k

k(ε + 1) + 1

(n + k)!

k!2(n − k)!
=

n∑
k=0

(−)n+k(n + k)!

k!2(n − k)!
= 1. (F18)

The latter equality can be obtained by evaluating Eq. (C3) at m = 0, ξ̄ = η̄ = 1. The second term above can be identified as cn

[Eq. (16)] and the sum in the first term can start at k = 1 without affecting the result, so we deduce

n∑
k=1

(−)n+kk

kε + k + 1

(n + k)!

k!2!(n − k)!
= 1 − cn

ε + 1
. (F19)

The potential, therefore, takes the form

V̄‖ = −β∞
R2

I x

r ′3 + 2β∞
ε + 1

cos φ

∞∑
n=1

2n + 1

n(n + 1)
(cn − 1)Q1

n(ξ̄ )P 1
n (η̄). (F20)

4. Electric field and modified decay rate with new approach

Starting from the proposed new formula for the potential solution [Eq. (F20)], we can deduce the electric field in terms of the
more convergent spheroidal harmonics expansions:

E‖ = − E0 cos φβ∞

{
R3

I sin θ (2r2 − RIz − R2
I )

r ′5 − 2

ε + 1

RI

r

∞∑
n=1

(2n + 1)(cn − 1)

×
[

Q1
n(ξ̄ )P 1

n (η̄)

n
+ Q1

n(ξ̄ )P 1
n+1(η̄) − Q1

n+1(ξ̄ )P 1
n (η̄)

(n + 1)(ξ̄ − η̄)

]}
r̂ − E0 cos φβ∞

{
R3

I

r ′5
(
r ′2 cos θ − 3RI r sin2 θ

)

+ 2

ε + 1

RI

r sin θ

∞∑
n=1

(2n + 1)(cn − 1)

[
Q1

n(ξ̄ )P 1
n (η̄)

n
cos θ − R2

I

4rr ′
Q1

n(ξ̄ )P 1
n+1(η̄)(ξ̄ 2 − 1) − Q1

n+1(ξ̄ )P 1
n (η̄)(η̄2 − 1)

(n + 1)

]}
θ̂

− E0 sin φβ∞

[
R3

I

r ′3 − 2

ε + 1

RI

r sin θ

∞∑
n=1

2n + 1

n(n + 1)
(cn − 1)Q1

n(ξ̄ )P 1
n (η̄)

]
φ̂. (F21)
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To calculate the self-field we substitute the dipole coordinates and take limits as θ → 0. Then we use Eq. (20) to obtain the
modified decay rate for a parallel dipole given in Eq. (21).
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