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a b s t r a c t 

The T -matrix, often obtained with Waterman’s extended boundary condition method (EBCM), is a widely- 

used tool for fast calculations of electromagnetic scattering by particles. Here we investigate the qua- 

sistatic or long-wavelength limit of this approach, where it reduces to an electrostatics problem. We first 

present a fully electrostatic version of the EBCM/T-matrix method (dubbed ES-EBCM). Explicit expressions 

are then given to quantitatively express the long-wavelength limit of the EBCM matrix elements in terms 

of those of the ES-EBCM formalism. From this connection we deduce a number of symmetry properties 

of the ES-EBCM matrices. We then investigate the matrix elements of the ES-EBCM formalism in the 

special case of prolate spheroids. Using the general electrostatic solution in spheroidal coordinates, we 

derive fully analytic expressions (in the form of finite sums) for all matrix elements. Those can be used 

for example for studies of the convergence of the T -matrix formalism. We illustrate this by discussing the 

validity of the Rayleigh hypothesis, where analytical expressions highlight clearly the link with analytical 

continuation of series. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In electromagnetic scattering, it is often convenient to express

the electric field in terms of multipoles, e.g. 

E (r ) = 

∑ 

n,m 

a m 

n M nm 

(r ) + b m 

n N nm 

(r ) (1)

where M nm 

and N nm 

are the electric and magnetic multipolar

fields, also called vector spherical wavefunctions, and form a com-

plete basis of divergence-less solutions of Helmoltz equation found

using separation of variables in spherical coordinates [1–4] . The

coefficients of the series expansion for the scattered field depend

linearly on those of the incident field, and this relation defines

the transition matrix (’ T -matrix’) [3] . Within the extended bound-

ary condition method (EBCM) [3,5] , also called null-field method

[6] or T -matrix method, the T -matrix is computed from the di-

vision of two matrices whose matrix elements are given by sur-

face integrals on the particle surface. This approach was devel-

oped by Waterman in the 1960–70s [7–9] and remains one of the

most powerful techniques for the study of electromagnetic scat-

tering by particles. It has been extensively studied and applied in
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any areas to compute the scattering properties of particles of ar-

itrary shapes [10] with a particular emphasis on axisymmetric

articles. 

Only a few studies have however studied its potential use

o solve electrostatic problems involving dielectric particles. One

pproach is to take the long-wavelength limit of the standard

BCM/ T -matrix formalism. This was discussed by Waterman in the

pecial two-dimensional case of infinite cylinders [11] . More re-

ently, Farafonov and co-workers have developed an electrostatic

ES) equivalent of the T -matrix/EBCM formulation [12,13] , hereafter

eferred to as ES-EBCM. They then exploited it to derive asymp-

otic expansions (for large multipole orders) for the matrix ele-

ents arising from the EBCM formalism and to study the valid-

ty of the Rayleigh hypothesis for electromagnetic scattering by a

article. The hypothesis states that the scattered field expansion

onverges everywhere outside the particle [3,4,14] . While it is gen-

rally accepted that the Rayleigh hypothesis is not always valid, its

ange of validity and its link to the singularity of the solutions are

till the subject of investigations [4,13–15] . 

In this work we show that analytic expressions can in fact be

btained for all ES-EBCM matrix elements in the special case of

pheroids. For this we use expansions of solid spherical harmonics

n terms of solid spheroidal harmonics and vice-versa. The analytic

 -matrix extends the previously-found asymptotic behavior of the

atrix elements. It moreover provides an analytic illustration of

http://dx.doi.org/10.1016/j.jqsrt.2017.05.031
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he region of validity of the Rayleigh hypothesis and its link to the

nalytical continuation of the series solution. 

The manuscript is organized as follows. In Section 2 , we re-

erive a fully self-contained ES-EBCM formulation, and establish

he link to the EBCM quantitatively. This allows us to discuss the

ymmetry properties of the ES-EBCM matrices from their EBCM

ounterparts. We then focus on the case of spheroids, first using

he ES-EBCM integrals ( Section 3 ). A simple expression is derived

or the first column of the T -matrix, which allows us to discuss the

ayleigh hypothesis and its connection with the analytic continu-

tion of the series of the scattered field. In Section 4 we then use

he separation of variable method in spheroidal coordinates, and

elationships between spherical and spheroidal harmonics, to ob-

ain analytic expressions for all matrix elements. 

. The EBCM for the electrostatics problem 

As described in Refs. [12,13] , the EBCM for electrostatics (ES-

BCM) can be derived from scratch following the same approach

s for electromagnetic scattering. For practical reasons, the basis

unctions are different to the long-wavelength limit of the spheri-

al wave-functions, which makes quantitative connections between

he two approaches cumbersome. Here we will therefore use dif-

erent notations and conventions to previous work [12,13] to sim-

lify the link to the full wave EBCM. We summarize below the

ain definitions and derivations of the ES-EBCM and provide this

uantitative link with the EBCM. 

We consider a dielectric particle embedded in a medium with

ielectric constants ε2 and ε1 , respectively, and an external field

 ext ( r ). The corresponding potential is �ext ( r ), and we denote

out ( r ) and �in ( r ) the (total) potentials outside and inside the par-

icle. 

.1. Surface-integral formulation 

The electrostatics problem can be formulated in terms of sur-

ace integral equations [16] . For two points r and r ′ , the free space

reen’s function is 

 (r , r ′ ) = 

1 

4 π | r − r ′ | . (2) 

sing Laplace’s equation, ∇ 

2 �in = 0 , and Green’s second identity

ith �in and G on the interior volume, we obtain: ∫ 
S 

[
�in 

(
r ′ 
) ∂G 

∂n 

′ −
− G 

∂�in 

∂n 

′ −

(
r ′ 
)]

dS ′ = 

{ −�in ( r ) r ∈ V, 

0 r / ∈ V. 
(3) 

here ∂ /∂ n ′ − is the derivative just inside the surface, with respect

o surface normal (and ∂ /∂ n ′ + is the derivative just outside). 

For the exterior volume V̄ , we note that �out does not strictly

atisfy Laplace’s equation everywhere because of sources ρ∞ 

at in-

nity associated with the external potential, i.e. ∇ 

2 �ext = −ρ∞ 

/ε0 

nd �ext = 

∫ 
V̄ Gρ∞ 

/ε0 dV ′ . Using Green’s second identity with �out 

nd G on the exterior volume, we obtain (note the change of sign

o retain the normal pointing outward): ∫ 
S 

[
�out 

(
r ′ 
) ∂G 

∂n 

′ + 
− G 

∂�out 

∂n 

′ + 

(
r ′ 
)]

dS ′ = 

{
�sca ( r ) r / ∈ V, 

−�ext ( r ) r ∈ V. 
(

here �out = �ext + �sca , with �sca the “scattered” potential. 1 

his expression is analogous to the null-field equations of the

BCM. 
1 The denomination “scattered” potential is aligned with the full-wave treatment, 

ut the term “reflected” potential would be more suited to a purely electrostatics 

roblem. 

�

�

Using the boundary conditions on the surface: �out = �in and

1 ∂ �out /∂ n + = ε2 ∂ �in /∂ n −, we can combine the above equations

o eliminate the Green’s function derivative (note that ∂ G/∂ n ′ + =
 G/∂ n ′ −) and get: 

( ε − 1 ) 

∫ 
S 

∂�in 

∂n 

′ −

(
r ′ 
)
G 

(
r , r ′ 

)
dS ′ = 

{
�ext − �in , r ∈ V 

−�sca , r / ∈ V 

(5) 

here ε = ε2 /ε1 is the relative dielectric constant. 

.2. Expansion in terms of solid spherical harmonics 

The next step is to expand Green’s function and the potentials

nto the basis of interest, here the standard solutions of Laplace’s

quations in spherical coordinates, chosen here as: 

(1) 
nm 

(r ) = A 

m 

n 

(
r 

R 

)n 

P m 

n ( cos θ ) e imφ, (6) 

(3) 
nm 

(r ) = A 

m 

n 

(
R 

r 

)n +1 

P m 

n ( cos θ ) e imφ, (7) 

 

m 

n = 

1 √ 

4 π

√ 

(n − m )! 

(n + m )! 
. (8) 

e include the arbitrary length R so that the basis functions are

imensionless. Without it, the matrix elements would have di-

ensions dependent on the row and column, which is not ideal.

he full-wave EBCM basis-functions are also commonly defined

s dimensionless [3] . R may be set as a characteristic length of

he problem, although physical predictions are independent of the

hoice of basis functions and therefore independent of R . 

Our choice of normalization is slightly different to that used

y Farafonov et al., and will simplify the connection with the full-

ave EBCM and with the approach using spheroidal coordinates in

ection 4 . These basis functions satisfy the following orthogonality

elations on a sphere of radius R : 

 

r= R 
�(i ) 

nm 

(r )�( j) 
n ′ m 

′ (r ) dS = 

δn,n ′ δm,m 

′ 

2 n + 1 

R 

2 , (9) 

nd Green’s function can be expanded as [17] : 

 (r , r ′ ) = 

1 

R 

∑ 

n̄ 

[
�(1) 

n̄ 
(r ′ ) 

]∗
�(3) 

n̄ 
(r ) , if r > r ′ , (10) 

 (r , r ′ ) = 

1 

R 

∑ 

n̄ 

[
�(3) 

n̄ 
(r ′ ) 

]∗
�(1) 

n̄ 
(r ) , if r < r ′ , (11) 

here the combined index notation n̄ is equivalent to both indices

, m (with | m | ≤ n ). 

The external and internal potentials can be written as series in

erms of �(1) 
nm 

, which are regular at the origin, while the scattered

otential is expanded in terms of �(3) 
nm 

, which vanish at infinity.

e here use notation in line with the electromagnetic treatment

s presented in Ref. [3] , explicitly: 

ext (r ) = 

∑ 

n,m 

˜ b m 

n �(1) 
nm 

(r ) , (12) 

in (r ) = 

∑ 

n,m 

˜ d m 

n �(1) 
nm 

(r ) , (13) 

sca (r ) = 

∑ 

˜ q m 

n �(3) 
nm 

(r ) . (14) 

n,m 
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2.3. Derivation of the ES-EBCM formula 

To solve the problem (determine �sca and �in ), we substitute

the series expansions of the potentials and of Green’s function into

the integral equations ( Eq. (5) ) and use the orthogonality of the

basis functions to obtain 

− ˜ q n̄ = (ε − 1) 
∑ 

k̄ 

˜ L 11 

n̄ ̄k 
˜ d 
k̄ 
, 

˜ b n̄ − ˜ d n̄ = (ε − 1) 
∑ 

k̄ 

˜ L 31 

n̄ ̄k 
˜ d 
k̄ 
, (15)

where (similarly to Ref. [12] ): 

˜ L 11 

n̄ ̄k 
= 

1 

R 

∫ 
S 

[
�(1) 

n̄ 
(r ′ ) 

]∗ ∂�(1) 

k̄ 

∂n 

′ (r ′ ) dS ′ , (16)

˜ L 31 

n̄ ̄k 
= 

1 

R 

∫ 
S 

[
�(3) 

n̄ 
(r ′ ) 

]∗ ∂�(1) 

k̄ 

∂n 

′ (r ′ ) dS ′ . (17)

The matrices L 11 and L 31 obtained by Farafonov [12,13] differ from

these by some normalization and dimensional coefficients due to

different basis functions. 

Eqs. (15) form an infinite-dimensional linear system between

the expansion coefficients, and just as with the EBCM, these can

be written succinctly using matrix notations: 

˜ q = − ˜ P ̃

 d , ˜ b = 

˜ Q ̃

 d , ˜ q = 

˜ T ̃

 b , (18)

where ˜ b , ̃  d , ˜ q are vectors containing elements ˜ b n̄ , ˜ d n̄ , ˜ q n̄ , and 

˜ P , ˜ Q ,
˜ T are infinite-dimensional matrices given by: 

˜ P = (ε − 1) ̃ L 11 

˜ Q = I + (ε − 1) ̃ L 31 

˜ T = − ˜ P ̃

 Q 

−1 (19)

Physically, ˜ P is the coupling matrix for the multipolar compo-

nent of order n̄ of the field created outside by a multipolar field

of order k̄ inside. ˜ Q 

−1 is the coupling matrix for the multipolar

component of order n̄ of the field created inside the particle when

excited by an external multipolar field of order k̄ . It is interesting

to note that the matrices ˜ L 11 and 

˜ L 31 are independent of permi-

tivity and depend on shape only. In fact, the matrix ˜ L 31 is a gen-

eralization of the depolarization factor introduced in the standard

electrostatics solution of the ellipsoid [18] . 

We also note that Green’s second identity on [�(1) 
n̄ 

] ∗ and �(1) 

k̄ 

implies that the matrix ˜ L 11 is Hermitian, i.e. ˜ L 11 

n̄ ̄k 
= [ ̃ L 11 

k̄ ̄n 
] ∗. 

2.4. Link with the standard EBCM formulation 

The connection between the ES-EBCM and EBCM formulations

was discussed in Ref. [19] , but with slightly different definitions

and only for the T -matrix, so for completeness we here adapt and

expand the main results. We use the standard EBCM notations of

Ref. [3] except for the RgQ matrix denoted P here. The link can be

established by considering the long-wavelength limit of the EBCM.

We do not here consider the magnetostatic limit or the limit of

the coupling between magnetic and electric multipoles, so only the

block T 22 relating to electric/electric multipole coupling needs to

be considered. In the long wavelength limit, the electric multipole

fields reduce to [19] 2 : 

N 

(1) 
nm 

→ A 

m 

n B n k 
n −1 ∇ [ r n P m 

n ( cos θ ) e imφ] , (20)
2 Note that there is an error for N 

(3) 
nm in Eq. (27) of Ref. [19] as the exponent for k 

should not be n + 1 , but n + 2 (as corrected here). 

f  

a

n  
 

(3) 
nm 

→ 

A 

m 

n 

B n 

i 

k n +2 

√ 

n 

n + 1 

∇ 

P m 

n ( cos θ ) e imφ

r n +1 
(21)

here N 

(1) 
nm 

and N 

(3) 
nm 

are the regular and irregular vector spheri-

al wavefunctions for electric multipoles, k is the wavenumber ( k 2 
nside the particle, k 1 outside), and we have defined for conve-

ience: 

 n = 

1 

(2 n − 1)!! 

√ 

(n + 1) 

n (2 n + 1) 
. (22)

omparing the general expansions of the incident and scattered

lectric fields and potentials via E = −∇�, and using (20) and

21) we derive: 

˜ 
 n̄ = −R (k 1 R ) n −1 B n b n̄ , (23)

˜ 
 n̄ = −Rs n −1 (k 1 R ) n −1 B n d n̄ , (24)

˜ 
 n̄ = − iR 

(k 1 R ) n +2 B n 
q n̄ , (25)

here s = k 2 /k 1 = 

√ 

ε is the relative refractive index of the par-

icle, and b n̄ , d n̄ , q n̄ are the expansion coefficients of the electric

ultipole component of the incident, internal and scattered elec-

ric fields in the EBCM [3] . 

From those, we deduce the relations between the matrices in

he λ → ∞ limit: 

T 22 

n̄ ̄k 
(λ → ∞ ) = −i (k 1 R ) n + k +1 B n B k 

˜ T 
n̄ ̄k 

, 

P 22 

n̄ ̄k 
(λ → ∞ ) = −is k −1 (k 1 R ) n + k +1 B n B k 

˜ P 
n̄ ̄k 

, 

 

22 

n̄ ̄k 
(λ → ∞ ) = s k −1 (k 1 R ) k −n B k 

B n 

˜ Q 

n̄ ̄k 
. (26)

gain the choice of R does not affect the long-wavelength limit

f the EBCM. This can be checked from Eqs. (32) and (19) which

how that the matrix elements in the ES-EBCM depend on R as

ollows: 

˜ 
 

n̄ ̄k 
∝ R 

−(n + k +1) , 

˜ 
 

n̄ ̄k 
∝ R 

−(n + k +1) , 

˜ 
 

n̄ ̄k 
∝ R 

(n −k ) . (27)

.5. Axisymmetric particles 

Similarly to the EBCM, the surface integrals L 11 and L 31 sim-

lify substantially for particles with symmetry of rotation (around

he z -axis). One major simplification is that only integrals with the

ame projected angular momentum ( m ) are non-zero, since the in-

egrals over φ are zero unless m = m 

′ . m can then be taken as a

xed parameter (and is sometimes omitted from the notation for

implicity). The surface integrals defining ˜ L 11 and 

˜ L 31 reduce to in-

egrals over θ and are all real, which implies that ˜ L 11 is symmetric:
˜ 
 

11 

n̄ ̄k 
= ̃

 L 11 

k̄ ̄n 
. The matrix elements in P, Q, T , are then also real if ε is

eal. In the EM case, the T 22 matrix is symmetric by virtue of opti-

al reciprocity [3] . From the link between the ECBM and ES-EBCM

 Eq. (26) ) we deduce that the matrix ˜ T is also symmetric (even

hough it is not obvious from Eq. (19) ). 

The integral expression can be further simplified by describing

he particle surface in spherical coordinates by an equation of the

orm r ( θ ). Denoting r θ = d r/ d θ, the surface normal and elementary

rea are 

 d S = [ re r − r θ e θ ] r sin θd θd φ (28)
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rom which we deduce (using ∂ 
∂n 

= n · ∇) 

∂�( 1 ) 
km 

∂n 

d S = 

[
r 
∂�( 1 ) 

km 

∂r 
− r θ

r 

∂�( 1 ) 
km 

∂θ

]
r sin θd θd φ. (29) 

n line with the notation of Refs. [3,20] , we write 3 : 

 

m 

n (θ ) = (−) m 

√ 

4 πA 

m 

n P 
m 

n ( cos θ ) , (30) 

m 

n (θ ) = 

d 

d θ
d m 

n (θ ) . (31) 

here (−) m is shorthand for (−1) m . We can then deduce after a

ew manipulations: 

˜ L 11 ,m 

nk 
= 

1 

2 

∫ π

0 

d θ sin θ
(

r 

R 

)n + k +1 

d m 

n 

[ 
kd m 

k − r θ
r 

τ m 

k 

] 
˜ 
 

31 ,m 

nk 
= 

1 

2 

∫ π

0 

d θ sin θ
(

r 

R 

)k −n 

d m 

n 

[ 
kd m 

k − r θ
r 

τ m 

k 

] 
(32) 

ote that the symmetry of ˜ L 11 
nk 

can be made more obvious using

ntegrations by part to obtain: 

˜ L 11 ,m 

nk 
= 

1 

2 

∫ π

0 

d θ sin θ
(

r 

R 

)n + k +1 
(

m 

2 

sin 2 θ
+ nk 

)
d m 

n d 
m 

k 
+ τ m 

n τ
m 

k 

n + k + 1 

. (33) 

ote also that all matrices can be computed for m ≥ 0 only, and

he values for m < 0 derive from 

˜ T −m 

nk 
= 

˜ T m 

nk 
(34) 

nd identical relations for the others matrices. 

. Spheroidal particles in the ES-EBCM formalism 

As highlighted in Refs. [20–22] , spheroidal particles are a spe-

ial case in EM scattering in the context of the T -matrix method

nd this is also the case in electrostatics. The electrostatics case is

ven more special as there exists a full analytical solution of the

roblem with the separation of variable method. This provides a

eans to find analytic expressions for the entire T, P , and Q ma-

rices (see Section 4 ). For clarity, we focus the discussion in this

ection on the simple case of a spheroidal dielectric particle in a

niform external field. The general case will be presented in the

ext section. 

We consider a prolate spheroid of semi-axes a along x, y and

 along z ( c > a ). It has half-focal length f = 

√ 

c 2 − a 2 and eccen-

ricity e = f/c. The surface is then defined in spherical coordinates

s: 

(θ ) = 

a √ 

1 − e 2 cos 2 θ
. (35) 

.1. Special properties 

Because of the reflection symmetry with respect to the z = 0

lane ( θ → π − θ ), half of the integrals are zero, namely: 

˜ 
 

11 ,m 

nk 
= 

˜ L 31 ,m 

nk 
= 

˜ P m 

nk = 

˜ Q 

m 

nk = 

˜ T m 

nk = 0 if n + k is odd . (36) 

Moreover, it was shown in the EM case [20] that the domi-

ant terms in some of the other integrals (with n + k even) van-

sh for spheroids, causing serious numerical issues. In electrostat-

cs, the situation is much simpler, as the corresponding integrals

anish completely [12,20] . As a result, ˜ Q is upper triangular for

pheroids: 

˜ 
 

m 

nk = 

˜ L 31 ,m = 0 if n > k, (37) 

nk 

3 This expression assumes that P m n ( cos θ ) is defined with the Condon-Shortley 

hase (−1) m . 

o

α

hich can be deduced from the identities proved in Ref. [20] . One

mmediate consequence is that for a uniform external field (which

as n = 1 only in its series expansion), the inside field is also uni-

orm (it also has n = 1 only in its expansion since ˜ Q 

−1 must also be

pper triangular). This is related to the Eshelby conjecture [23,24] ,

hich states that ellipsoids (of which spheroids are a special case)

re the only geometry for which the inside field is uniform when

laced in an external uniform field, so we may also conjecture that

llipsoids are the only geometry for which 

˜ Q is upper triangular. 

.2. Integral approach for a uniform field 

Following the standard EBCM approach, we could calculate the

atrix ˜ T from the surface integrals in Eq. (32) and the expressions

n Eq. (19) . This method is however cumbersome so we apply it

nly for illustration to the elements ˜ T m =0 
n 1 

, which are sufficient to

olve the problem for a uniform external field along the z -axis E =
 0 ̂ z . The expansion of the external potential has only one term:

˜ 
 

0 
1 

= −√ 

4 πRE 0 . Since ˜ Q is upper triangular, ˜ R = 

˜ Q 

−1 is also upper

riangular and 

˜ R 0 
11 

= 

(
˜ Q 

0 
11 

)−1 
, consequently 

˜ 
 

0 
1 = 

˜ b 0 1 

1 + (ε − 1) ̃ L 31 ,m =0 
11 

, (38) 

nd 

˜ d 0 n = 0 for n ≥ 2 (the internal field is uniform, as previously

iscussed). Moreover, 

˜ 
 

0 
n 1 = − ˜ P 0 n 1 

(
˜ Q 

0 
11 

)−1 = − (ε − 1) ̃ L 11 ,m =0 
n 1 

1 + (ε − 1) ̃ L 31 ,m =0 
11 

, (39) 

nd the “scattered” field expansion coefficients are given by ˜ q 0 n =
˜ 
 

0 
n 1 

˜ b 0 
1 
. 

We must now calculate the two L -integrals. Firstly: 

˜ 
 

31 ,m =0 
11 

= 

a 2 

2 c 2 

∫ π

0 

dθ sin θ
cos 2 θ

1 − e 2 cos 2 θ
. (40) 

his is the standard depolarization factor along the long axis of a

rolate spheroid, L z [2,18] , which and can be expressed explicitly

s 

˜ 
 

31 ,m =0 
11 

= L z = 

1 − e 2 

e 2 

[ 
1 

2 e 
ln 

1 + e 

1 − e 
− 1 

] 
. (41) 

he second integrals, ˜ L 11 ,m =0 
n 1 

, can be simplified to: 

˜ 
 

11 ,m =0 
n 1 

= 

∫ π

0 

d θ sin θ cos θ
r(θ ) n +4 

2 c 2 R 

n +2 
P n ( cos θ ) . (42)

ecause of the reflection symmetry, this integrates to zero for n

ven. For n odd, accurate numerical evaluation of these integrals

s difficult because of oscillations and cancellations. However it is

ossible to find a very simple analytic solution: 

˜ 
 

11 ,m =0 
n 1 

= 

1 

n + 2 

a 2 c f n −1 

R 

n +2 
(n odd ) . (43) 

his result is derived in Appendix A using the integral expression

nd will also result from the derivation presented in the next sec-

ion. We deduce that: 

˜ 
 

m =0 
n 1 = 

{ −(ε−1) 
1+(ε−1) L z 

1 
n +2 

a 2 c f n −1 

R n +2 n odd 

0 n even 

(44) 

The scattered potential expansion is then (note that it is R -

ndependent as expected): 

sca = 

∑ 

n 

˜ q 0 n �
(3) 
n 0 

= 

αzz E 0 
4 πε0 ε1 

∞ ∑ 

n odd 

3 f n −1 

n + 2 

P n ( cos θ ) 

r n +1 
, (45) 

here we have introduced the standard dipolar polarizability αzz 

f the prolate spheroid along its long axis [2,18,25] : 

zz = 4 πε0 ε1 
a 2 c ε − 1 

. (46) 

3 1 + (ε − 1) L z 
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3.3. Revisiting the Rayleigh hypothesis 

Thanks to this simple analytic expression ( Eq. (45) ), it is

straightforward to infer that the series diverges for r < f and con-

verges for r > f . This boundary marks the range of validity of the

Rayleigh hypothesis for a prolate spheroid in the ES-EBCM frame-

work. It is the same boundary as found using asymptotic expres-

sions for the coefficients [12,13] , and as found in full-wave EBCM

calculations [14] . This is expected given the link between the ES-

EBCM and the long-wavelength limit of the EBCM. The advantage

of our analytic expression is that it provides a vivid illustration of

the mathematical concepts involved in discussing the Rayleigh hy-

pothesis, in particular its link to the analytic continuation of the

solution, on which we now elaborate. 

If we consider a high aspect ratio spheroid with c/a > 

√ 

2 , there

is a region close to the surface (away from the tips), where r <

f and the scattered field expansion diverges. Despite this, the ES-

EBCM (or EBCM) remains valid as it does not rely on the Rayleigh

hypothesis and the expansion in Eq. (45) remains correct where it

converges – it only fails in some regions near the surface. The rea-

son for this failure is that the spherical basis chosen to expand the

scattered field is not well suited to the intrinsic singularity of the

solution. To see this explicitly, one can find an analytic expression

for the series expansion in Eq. (45) (derived in Appendix B ): 

�sca = 

3 αzz E 0 
4 πε0 ε1 f 3 

[
z ln 

(
r ′ − z ′ 
r ′′ − z ′′ 

)
+ r ′ − r ′′ 

]
, (47)

where r ′ , z ′ and r ′ ′ , z ′ ′ refer to the coordinates in the offset frames

centered on the focal points F ′ (at r = f ̂  z ) and F ′′ (at r = − f ̂  z ), or

explicitly: 

z ′ = z − f, r ′ = 

√ 

r 2 − 2 f r cos θ + f 2 , 

z ′′ = z + f, r ′′ = 

√ 

r 2 − 2 f r cos θ + f 2 . (48)

This is the analytic continuation of Eq. (45) ; it is singular only on

the z axis between the two foci of the spheroid. The basis of solid

spherical harmonics was not well suited for such a solution be-

cause a series of these harmonics always has a spherical bound-

ary of convergence, and such an expansion ( Eq. (45) ) therefore in-

creased the singular region from a line to the smallest sphere con-

taining that line (the sphere r = f ). Note nevertheless that since

the analytic continuation of a series is unique, the series in Eq.

(45) already contains, at least formally, all the information about

the scattered field, even in the regions where it diverges. In gen-

eral however, finding an analytic continuation is a difficult prob-

lem, and other methods must be used to calculate the scattered

field near the surface [14] . These arguments have been laid out be-

fore from an abstract point of view [4,26–31] , but we believe the

simple analytic expressions derived here provide an insightful il-

lustration. 

4. Full analytic solution of the ES-EBCM formalism for prolate 

spheroids 

In the case of the electrostatics problem for spheroids, the gen-

eral solution may also be found using separation of variables in

spheroidal coordinates. Those solutions can then be expressed in

the basis of solid spherical harmonics to find analytic expressions

for all the matrix elements of the ES-EBCM. 

4.1. Separation of variables method 

We use prolate spheroidal coordinates ( ξ , η, φ) defined as fol-

lows [1] : 

ξ = 

r ′′ + r ′ 
2 f 

, η = 

r ′′ − r ′ 
2 f 

, (49)
here r ′ , r ′ ′ were defined in Eq. (48) and φ is the same as

n spherical coordinates. Surfaces of constant ξ represent prolate

pheroids with focal length 2 f . We will consider a dielectric prolate

pheroid of semi-axes a and c ( c > a ) as in the previous section in

 general external field. The half focal length is f = 

√ 

c 2 − a 2 and

he eccentricity e = f/c. In spheroidal coordinates, the surface is at

= ξ0 = 1 /e . 

For the most general external potential, this problem can be

olved using solid spheroidal harmonic bases by expanding the po-

entials as: 

ext = 

∑ 

n,m 

αm 

n P 
m 

n (ξ ) P m 

n (η) e imφ, (50)

in = 

∑ 

n,m 

βm 

n P 
m 

n (ξ ) P m 

n (η) e imφ, (51)

sca = 

∑ 

n,m 

γ m 

n Q 

m 

n (ξ ) P m 

n (η) e imφ, (52)

here Q 

m 

n are the associated Legendre functions of the second

ind. 

The boundary conditions are: 

in | ξ= ξ0 
= �out | ξ= ξ0 

; ε
∂�in 

∂ξ

∣∣∣∣
ξ= ξ0 

= 

∂�out 

∂ξ

∣∣∣∣
ξ= ξ0 

. (53)

pplying these and using the fact that P m 

n (η) form a basis, we

ave 

m 

n = αm 

n + γ m 

n 

Q 

m 

n (ξ0 ) 

P m 

n (ξ0 ) 
, εβm 

n = αm 

n + γ m 

n 

∂Q 

m 

n (ξ0 ) 

∂P m 

n (ξ0 ) 
, (54)

here ∂P m 

n and ∂Q 

m 

n denote the derivatives of P m 

n and Q 

m 

n . From

his, we derive 

m 

n = �m 

n α
m 

n ; γ m 

n = ϒm 

n α
m 

n , (55)

here 

�m 

n = 

∂Q 

m 

n (ξ0 ) P 
m 

n (ξ0 ) − Q 

m 

n (ξ0 ) ∂P m 

n (ξ0 ) 

∂Q 

m 

n (ξ0 ) P 
m 

n (ξ0 ) − εQ 

m 

n (ξ0 ) ∂P m 

n (ξ0 ) 
, 

m 

n = 

(ε − 1) P m 

n (ξ0 ) ∂P m 

n (ξ0 ) 

∂Q 

m 

n (ξ0 ) P 
m 

n (ξ0 ) − εQ 

m 

n (ξ0 ) ∂P m 

n (ξ0 ) 
. (56)

e have introduced the external ϒm 

n and internal �m 

n spheroidal

usceptibilities, which are similar to the multipolar polarizabilities

or a sphere but depend on m , as expected for a non-spherically-

ymmetric object. ϒm 

n is analogous to the ˜ T matrix: for a spheroid,
˜ 
 

m is diagonal in the spheroidal basis with diagonal elements ϒm 

n .

imilar observations can be made for the other matrices: ˜ P , ˜ Q ,
˜ 
 

11 , ˜ L 31 . For example (�m 

n ) 
−1 are the diagonal elements of ˜ Q 

m and

ϒm 

n / �
m 

n the diagonal elements of ˜ P in the spheroidal basis. 

The spheroidal susceptibilities can be simplified by identify-

ng the Wronskian of the associated Legendre equation (see Sec-

ion 8.1.8 in Ref. [32] ): 

 

m 

n (ξ0 ) = P m 

n (ξ0 ) ∂Q 

m 

n (ξ0 ) − ∂P m 

n (ξ0 ) Q 

m 

n (ξ0 ) 

= 

(−) m +1 

ξ 2 
0 

− 1 

(n + m )! 

(n − m )! 
= (−) m +1 (n + m )! 

( n − m )! 

f 2 

a 2 
. (57)

hen we have 

m 

n = 

1 

1 − (ε − 1) Q 

m 

n (ξ0 ) ∂P m 

n (ξ0 ) /W 

m 

n (ξ0 ) 
, (58)

m 

n = 

(ε − 1) P m 

n (ξ0 ) ∂P m 

n (ξ0 ) 

W 

m 

n (ξ0 ) − (ε − 1) Q 

m 

n (ξ0 ) ∂P m 

n (ξ0 ) 
, (59)

ϒm 

n 

�m 

= (ε − 1) 
P m 

n (ξ0 ) ∂P m 

n (ξ0 ) 

W 

m (ξ0 ) 
. (60)
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e can also rearrange the solution as: 

m 

n = −(ε − 1)�11 ,m 

n βm 

n (61) 

m 

n − βm 

n = (ε − 1)�31 ,m 

n βm 

n , (62) 

here 

11 ,m 

n = −P m 

n (ξ0 ) ∂P m 

n (ξ0 ) 

W 

m 

n (ξ0 ) 
, (63) 

31 ,m 

n = −Q 

m 

n (ξ0 ) ∂P m 

n (ξ0 ) 

W 

m 

n (ξ0 ) 
, (64) 

re the diagonal elements of ˜ L 11 , ˜ L 31 expressed in the spheroidal

asis. 

.2. Analytic expressions for all matrix elements 

Using the simple relationships between the incident, scat-

ered and internal fields in the spheroidal basis, and the ex-

ansions between spherical and spheroidal harmonics, we can

erive the equivalent relationships in the spherical basis and

herefore analytic expressions for all elements of ˜ P , ˜ Q , and 

˜ T .

he spherical-spheroidal harmonic expansions [33,34] are summa-

ized in Appendix C . These express the spherical basis functions,

 

n P m 

n ( cos θ ) or r −n −1 P m 

n ( cos θ ) , as a sum of spheroidal basis func-

ions, P m 

k 
(ξ ) P m 

k 
(η) or Q 

m 

k 
(ξ ) P m 

k 
(η) , and vice versa. We set R = f in

he following to simplify the resulting expressions. 

Our goal is to express ˜ q m 

n in terms of ˜ b m 

n . We first express αm 

n 

n terms of ˜ b m 

n , i.e. derive the spheroidal expansion of the external

eld from its spherical expansion. Inserting Eq. (C.2) into the exter-

al potential spherical expansion ( Eq. (12) ), rearranging the order

f summation, and identifying the coefficients αm 

n from Eq. (50) ,

e obtain: 

m 

s = 

∞ ∑ 

k = s 
sk 

(2 s + 1)(k + m )! 

(k − s )!!(k + s + 1)!! 

(s − m )! 

(s + m )! 
A 

m 

k 
˜ b m 

k , (65) 

ith sk = 

{
1 if s + k even, 
0 if s + k odd. 

(66) 

e then express ˜ q m 

n in terms of γ m 

n by substituting Eq. (C.4) into

q. (52) and identifying the coefficients ˜ q m 

n from Eq. (14) 

˜ 
 

m 

n = 

n ∑ 

s = | m | 
sn 

(−) m (n − m )! 

(n − s )!!(s + n + 1)!! 

(s + m )! 

(s − m )! 

1 

A 

m 

n 

γ m 

s (67) 

he relationship between ˜ q m 

n and 

˜ b m 

n is found by combining Eqs.

65) , (67) with the relation γ m 

s = Y 

m 

s α
m 

s ( Eq. (55) ) and swapping

he order of summation: 

˜ 
 

m 

n = 

∞ ∑ 

k = | m | 

min (n,k ) ∑ 

s = | m | 
sk sn 

A 

m 

k 

A 

m 

n 

ϒm 

s 

× (−) m (2 s + 1)(n − m )!(k + m )! 

(n − s )!!(n + s + 1)!!(k − s )!!(k + s + 1)!! 
˜ b m 

k , (68) 

here min ( n, k ) denotes the minimum of n and k . The matrix ele-

ents of ˜ T can be readily identified as: 

˜ 
 

m 

nk = nk (−) m C m 

n C 
m 

k 

×
min (n,k ) ∑ 

s = | m | 

sn (2 s + 1) ϒm 

s 

(n − s )!!(n + s + 1)!!(k − s )!!(k + s + 1)!! 
, (69) 

here we have defined 

 

m 

n = 

√ 

(n − m )!(n + m )! . (70) 

d

ote that ϒm 

s depends on the spheroid shape (via ξ 0 ) and its op-

ical properties (via ε). 

For ˜ L 11 , we use Eq. (61) and the derivation is almost identical

o that of ˜ T : 

˜ 
 

11 ,m 

nk 
= kn (−) m C m 

n C 
m 

k 

×
min (n,k ) ∑ 

s = | m | 

sn (2 s + 1) �11 ,m 

s 

(n −s )!!(n + s + 1)!!(k − s )!!(k + s + 1)!! 
. (71) 

n this form, the symmetry of ˜ T and 

˜ L 11 is clear. For ˜ L 31 , we need

he inverse relation of Eq. (65) , which is obtained using the expan-

ion Eq. (C.1) . We then use Eq. (62) to get: 

˜ 
 

31 ,m 

nk 
= 0 if n > k, else 

˜ 
 

31 ,m 

nk 
= kn 

C m 

k 

C m 

n 

×
k ∑ 

s = n 
sn 

(−) (s −n ) / 2 (2 s + 1)(n + s − 1)!! �31 ,m 

s 

(s − n )!!(k − s )!!(k + s + 1)!! 
(72) 

s previously observed, the L -matrices only depend on shape, not

n ε. ˜ P and 

˜ Q are easily derived from Eq. (19) . 

.3. Special cases 

It is interesting to consider a few special cases. Firstly for m =
 : 

31 ,m =0 
n =1 

= (ξ 2 
0 − 1)(ξ0 Q 0 (ξ0 ) − 1) = L z . (73) 

he latter equality arises when setting e = 1 /ξ0 in Eq. (41) . We also

ave 

11 ,m =0 
n =1 

= (ξ 2 
0 − 1) ξ0 = 

1 − e 2 

e 3 
= 

a 2 c 

f 3 
. (74) 

rom those we deduce 

0 
1 = − (ε − 1) 

1 + (ε − 1) L z 

a 2 c 

f 3 
. (75) 

For the T -matrix, we have from Eq. (69) : 

˜ 
 

m =0 
n 1 = 

ϒ0 
1 

n + 2 

(n odd ) , (76) 

hich is the same as Eq. (44) found earlier. 

For m = 1 , we have 

11 ,m =1 
n =1 

= − a 2 c 

2 f 3 
, (77) 

31 ,m =1 
n =1 

= 

1 

2 

[
c 2 

f 2 
− ξ0 Q 0 (ξ0 ) 

]
= 

1 − L z 

2 

. (78) 

he latter is the depolarization factor of the spheroid along the x,

 directions: L x = L y = (1 − L z ) / 2 . From those, we have 

1 
1 = 

(ε − 1) 

1 + (ε − 1) L x 

a 2 c 

2 f 3 
, (79) 

nd Eq. (69) simplifies to 

˜ 
 

m =1 
n 1 = −

√ 

2(n + 1) 

n 

ϒ1 
1 

n + 2 

. (80) 

Finally, for a general n and m , Eq. (72) also reduces to a single

erm when k = n : 

˜ 
 

31 ,m 

nn = �31 ,m 

n = −Q 

m 

n (ξ0 ) ∂P m 

n (ξ0 ) 

W 

m 

n (ξ0 ) 
. (81) 

hose diagonal elements of ˜ L 31 can be viewed as the generalized

epolarization factors of the spheroid for multipole orders n, m . 
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Fig. 1. Colormaps of the number of digits of agreement (computed from − log 10 of the relative error) between two methods of calculating the T -matrix for prolate spheroids 

of long-axis c : using the EBCM code from [35] and from the electrostatic analytic formula given in Eq. (69) . In each plot, the aspect ratio is c / a = 10, the wavelength of 

excitation is 600 nm and the relative permittivity is ε = 1 . 5 . The EBCM T -matrix was compared to that obtained from the ES-EBCM using Eq. (26) . The elements shown here 

are for m = 0 (similar results are obtained for higher m ), and n, k ≤ 39 (only the non-zero elements are shown). The lower degree elements are towards the top left. The 

error decreases with particle size as the problem approaches the quasi-static limit. 
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4.4. Comparison with EBCM results 

To assess the applicability of our analytic results, we compare

the analytic matrix elements for spheroids to those obtained nu-

merically using an accurate implementation of the EBCM method

for spheroids [22] for which codes are available [35] . The rela-

tions established in Eq. (26) are used to compare the two meth-

ods. For particles much smaller than the wavelength, the analytic

quasi-static solution is expected to provide a good approximation

to the exact result. This is illustrated in Fig. 1 for three dielectric

prolate spheroids all of aspect ratio 10 and long semi-axis 10, 20

and 30 nm, excited with 600 nm wavelength light. The agreement

between the two methods increases as the size decreases, as ex-

pected. Note however that the other blocks of the EBCM T -matrix,

T 11 , T 12 , and T 21 contain elements that are not negligible in the

quasi-static limit. So for the ES-EBCM to be applicable as an ap-

proximation to quasi-static (not just electrostatic) problems, these

other blocks should also be taken into account. 

5. Conclusion 

In summary, this work provides a detailed investigation of the

electrostatics limit of Waterman’s T -matrix formalism, in particular

in the special case of spheroidal particles. We focused specifically

on prolate spheroids but the results could be adapted to oblate

spheroids. We believe that the analytic expressions that we de-

rived will provide an insight into the fundamental properties of

the T -matrix formalism. This was illustrated in the context of the

Rayleigh Hypothesis and its connection to the analytic continuation

of the solutions. The ES-EBCM formalism could be further devel-

oped to encompass the magnetostatic limit (relating to magnetic

multipoles) and the long-wavelength limit of the coupling matri-

ces between electric and magnetic multipoles. The ES-EBCM for-

malism could moreover be applied to the solution of other elec-

trostatic problems. 

Acknowledgments 

We acknowledge the support of the Royal Society of New

Zealand (RSNZ), (grant no. VUW-1618), through a Marsden Grant

(ECLR) and a Rutherford Discovery Fellowship (BA). 
ppendix A. Proof of Eq. (43) 

We reproduce here the form of the integral 

˜ 
 

11 ,m =0 
n 1 

= 

∫ π

0 

d θ sin θ cos θ
r(θ ) n +4 

2 c 2 R 

n +2 
P n ( cos θ ) (A.1)

nd consider n odd only (the integral is zero for n even). We first

ubstitute r ( θ ) from Eq. (35) and make the change of variable x =
os θ : 

˜ 
 

11 ,m =0 
n 1 

= 

a n +4 

2 c 2 R 

n +2 

∫ 1 

−1 

d x 
x (

1 − e 2 x 2 
) n +4 

2 

P n (x ) . (A.2)

sing the binomial expansion, this is rewritten as a series 

˜ 
 

11 ,m =0 
n 1 

= 

a n +4 

2 ec 2 R 

n +2 

∫ 1 

−1 

d x 

∞ ∑ 

p=0 

αp,n (ex ) 2 p+1 P n (x ) , (A.3)

here 

p,n = 

(
p + 

n 
2 

+ 1 

p 

)
. (A.4)

ote that n is odd and this is a generalized binomial coefficient

ith half-integer entries. 

We then expand the powers x 2 p+1 on the basis of Legendre

olynomials as 

 

2 p+1 = 

2 p+1 ∑ 

l odd 

(2 l + 1) βl,p P l (x ) (A.5)

his is as a special case of Eq. (C.2) , evaluated at η = 1 , n = 2 p + 1 ,

 = 0 , where the coefficients are 

l,p = 

2 

2 l (2 p + 1)!(p + 

l+1 
2 

)! 

(p − l−1 
2 

)!(2 p + l + 2)! 
. (A.6)

Using the orthogonality of the Legendre polynomials, the inte-

ral can be expressed as 

˜ 
 

11 ,m =0 
n 1 

= 

a n +4 

c 2 R 

n +2 

∞ ∑ 

p=(n −1) / 2 

αp,n βn,p e 
2 p . (A.7)

p, n βn, p can be shown to simplify to 

p,n βn,p = 

1 

n + 2 

(
p + 

1 
2 

p − n −1 

)
. 
2 
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e-indexing the sum with k = p − (n − 1) / 2 : 

˜ 
 

11 ,m =0 
n 1 

= 

a n +4 e n −1 

c 2 R 

n +2 (n + 2) 

∞ ∑ 

k =0 

(
k + 

n 
2 

k 

)
e 2 k , (A.8) 

here we recognize the binomial series expansion for 1 
(1 −e 2 ) n/ 2+1 ,

hich simplifies using e = f/c and 1 − e 2 = a 2 /c 2 to 

˜ 
 

11 ,m =0 
n 1 

= 

a 2 c f n −1 

R 

n +2 

1 

n + 2 

. (A.9) 

s shown in Section 4 , this can be alternatively derived from the

pheroidal coordinate solution of the problem. Given the remark-

ble simplicity of the final expression for ˜ L 11 ,m =0 
n 1 

, one might have

xpected that a simpler proof would be possible. 

ppendix B. Analytic continuation of the multipole expansion 

or the scattered potential 

We start from the series expansion given in the main text

rewritten here up to a constant factor): 

(r, θ ) = 

∞ ∑ 

n odd 

1 

n + 2 

(
f 

r 

)n +1 

P n ( cos θ ) . (B.1)

We first recognize that this expression has some resem-

lance with the generating function for the Legendre polynomials,

amely: 

1 √ 

1 − 2 u cos θ + u 

2 
= 

∞ ∑ 

n =0 

u 

n P n ( cos θ ) . (B.2)

We therefore define 

G ( u, θ ) = 

1 

u 

∫ u 

0 

v d v √ 

1 − 2 v cos θ + v 2 
= 

∞ ∑ 

n =0 

u 

n +1 

n + 2 

P n ( cos θ ) (B.3) 

rom which we infer 

(r, θ ) = 

1 

2 

[
G 

(
f 

r 
, θ

)
− G 

(
− f 

r 
, θ

)]
. (B.4) 

he integral for G can be calculated analytically: 

 (u, θ ) = 

√ 

1 − 2 u cos θ + u 

2 − 1 

u 

+ 

cos θ

u 

ln 

(
u − cos θ + 

√ 

1 − 2 u cos θ + u 

2 

1 − cos θ

)
. (B.5) 

ote that this result can also be obtained from Eq. (C.3) with n = 0 .

he simpler expression given in Eq. (47) can be obtained by con-

idering the offset coordinate frames centred at both foci (the off-

et coordinates are defined explicitly in Eq. (48) ). 

ppendix C. Relationships between spherical and spheroidal 

olid harmonics 

Below are the four possible relations between the regular and

rregular spherical solid harmonics, and the regular and irregular

rolate spheroidal harmonics. The azimuthal dependence e ±im φ is

mitted since it is the same on both sides. The spheroidal coor-

inates are defined in Eq. (49) . By setting R = f in the definitions

f our spherical basis functions, those can easily be rewritten in

erms of �(1) 
nm 

and �(3) 
nm 

. Derivations can be found in [33,34] . 

 

m 

n (ξ ) P m 

n (η) = 

(n + m )! 

(n − m )! 

n ∑ 

k = m 

kn (−) (n −k ) / 2 

× (n + k − 1)!! 

(n − k )!!(k + m )! 

(
r 

f 

)k 

P m 

k ( cos θ ) (C.1) 
r 

f 

)n 

P m 

n ( cos θ ) = (n + m )! 

n ∑ 

k = m 

kn 

× (2 k + 1) 

(n − k )!!(n + k + 1)!! 

(k − m )! 

(k + m )! 
P m 

k (ξ ) P m 

k (η)

(C.2) 

 

m 

n (ξ ) P m 

n (η) = (−) m 

(n + m )! 

( n − m )! 

∞ ∑ 

k = n 
kn 

× (k − m )! 

(k − n )!!(k + n + 1)!! 

(
f 

r 

)k +1 

P m 

k ( cos θ ) (C.3) 

f 

r 

)n +1 

P m 

n ( cos θ ) = 

(−) m 

(n − m )! 

∞ ∑ 

k = n 
kn (−) (n −k ) / 2 

× (2 k + 1)(n + k −1)!! 

(k − n )!! 

(k −m )! 

(k + m )! 
Q 

m 

k (ξ ) P m 

k (η)

(C.4)
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