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The convergence behavior of the T-matrix method as calculated by the extended
boundary condition method (EBCM) is studied, in the case of light scattering by spheroidal
particles. By making use of a new formulation of the EBCM integrals specifically designed
to avoid numerical cancellations, we are able to obtain accurate matrices up to high
multipole order, and study the effect of changing this order on both the individual matrix
elements and derived physical observables. Convergence of near- and far-field scattering
properties with a relative error of 10�15 is demonstrated over a large parameter space in
terms of size, aspect ratio, and particle refractive index. This study demonstrates the
capability of the T-matrix/EBCM method for fast, efficient, and numerically stable
electromagnetic calculations on spheroidal particles with an accuracy comparable to
Mie theory.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The T-matrix method, as originally formulated by
Waterman [1], also known as the extended boundary
condition method (EBCM) or null-field method, is consid-
ered to be one of the most efficient semi-analytical
approaches to model electromagnetic scattering by parti-
cles [2]. It is particularly suited to the calculation of
orientation-averaged properties, which can be extremely
time-consuming with fully numerical methods. The EBCM
has been applied across many fields to calculate the optical
properties of particles, e.g. in atmospheric measurements
[3], astronomical studies [4], nano-science and particularly
plasmonics [5–8], with a recent emphasis on near-field
calculations [9–11]. With a theoretical footing closely
related to Mie theory, but generalized to nonspherical
R.C. Somerville),
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particles, the T-matrix method lends itself naturally to
analytical studies and improvements, e.g. with the intro-
duction of discrete symmetries using group theory [12], or
the enforcement of energy conservation and the study of
radiative corrections [13]. As shown recently, the conver-
gence properties of Mie theory are relatively simple and
highly accurate results (e.g. 10�15 relative error in double
precision) can be straightforwardly obtained over a large
parameter range (of size and material) [14]. In contrast to
Mie theory however, the EBCM suffers from a number of
numerical instabilities, typically attributed to inversion of
ill-conditioned matrices, which severely limits its range of
applicability [15,16]. These problems are usually evidenced
as a failure to obtain convergent results for physical
observables, such as far-field cross-sections, with respect
to the number of higher-order multipoles included in the
simulation. This undesirable behavior – lack of conver-
gence entails poor estimates of the accuracy of the
calculations, and offers no possibility of reaching an
arbitrary level of precision – is most easily noticeable for
particles much larger than the wavelength, with a large
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refractive index, or with highly anisotropic shapes (high
aspect ratio). These numerical problems have so far pre-
cluded any detailed study of the convergence properties of
the EBCM or T-matrix method itself, as they often arise
before full convergence can be established. Some of these
effects can be partly mitigated by increasing the floating
point precision to quadruple [15] or arbitrary [17] preci-
sion, by using general symmetry relations for particles
with point group symmetries [18], or by using the null-
field method with multiple discrete sources [19,20]. How-
ever, these approaches significantly increase computa-
tional times and complexity, arguably negating the main
advantages of the EBCM over fully numerical techniques.
Alternatively, we have recently identified the cause of
numerical cancellations in the special case of spheroidal
particles [17] and developed new methods to overcome
them [21]. This new approach opens up the possibility to
study the convergence properties of the EBCM for spher-
oids with no interference from numerical issues, as
demonstrated in this paper. The convergence of T-matrix
elements, as well as both far-field and near-field properties
is studied as a function of the maximum multipole order.
We show that the convergence properties are more
complicated than those of Mie theory and for example
depend not only on size, but also on refractive index.
Perhaps unexpectedly, convergence does not depend sig-
nificantly on aspect ratio, however. We demonstrate the
potential of the method for ultra-high precision calcula-
tions (10�15 relative error) over a large parameter space,
including challenging cases such as highly elongated
spheroids with aspect ratio 100. It is hoped that the tools
and results presented in this work will demystify the
convergence/numerical problems of the T-matrix/EBCM
method and encourage its widespread application for the
calculations of the optical properties of spheroids across
diverse fields.
2. T-matrix method

A detailed description of the T-matrix/EBCM method
can be found in e.g. [2] and we here only recall the
definitions most relevant to this work. As for Mie theory,
the field solutions are expressed as infinite series of the
vector spherical wavefunctions (VSWFs), which represent
magnetic (M) and electric (N) multipole fields. For exam-
ple, for the scattered field, we have

EscaðrÞ ¼ E0
X
n;m

pnmMnmðkrÞþqnmNnmðkrÞ; ð1Þ

where n¼ 1…1 is the multipolar order, jmjrn the
projected angular momentum number, and k the wave-
vector in the medium. The incident and internal fields are
also expressed as similar expansions in terms of regular
VSWFs (RgM and RgN) with coefficients ðanm; bnmÞ and
ðcnm; dnmÞ respectively.

The EBCM expresses the linear relationship between
these coefficients with two infinite matrices P and Q,

p
q

 !
¼ �P

c
d

� �
and

a
b

� �
¼Q

c
d

� �
; ð2Þ
which are then used to form the T-matrix (R-matrix)
linking the coefficients of the incident and scattered
(internal) fields:

p
q

 !
¼ T

a
b

� �
and

c
d

� �
¼ R

a
b

� �
;

with
T¼ �PQ �1

R¼Q �1:

(
ð3Þ

Note that for convenience, the matrices are often
described in 2�2 block form, separating the magnetic,
electric, and coupled magneto-electric terms as follows:

T¼ T11 T12

T21 T22

 !
: ð4Þ

From these matrices, all physical properties can be
expressed as series involving either the expansion coeffi-
cients (like the scattered field in Eq. (1)) or the T-matrix
elements for orientation-averaged properties (e.g. scatter-
ing cross-section). In practice those series must be trun-
cated at a maximum multipole order N and we will here
focus on the convergence of the series as N is increased (as
for Mie theory [14,22]). Note that in this work we use all
values of jmjrn at each multipole order. This study will be
limited to prolate spheroids and the relevant parameters
of the problem will be the relative refractive index
s¼ n2=n1, the size parameter xmax ¼ krmax, and the aspect
ratio h¼ rmax=rmin where rmax (rmin) is the long (short)
semi-axis, k¼ 2πn1=λ the wavevector in the incident
medium, and n1 (n2) is the refractive index in the medium
(particle).

Within the EBCM, the matrix elements of P and Q are
calculated as surface integrals on the particle surface
[2,23]. In the case of axisymmetric particles, a number of
simplifications arise as a result of symmetries, most
notably there is entire decoupling between subspaces
corresponding to different m, i.e. all matrices are block-
diagonal and the integrals are reduced to simple one-
dimensional integrals, which are computed using standard
Gaussian quadrature [2,23]. The emphasis here is not on
these quadratures, and the number of quadrature points is
always chosen large enough to ensure that the results do
not depend on it within double precision accuracy. As
recently shown [17], the computation of a subset of those
integrals is the primary source of numerical instability for
the special case of spheroids, as severe cancellations occur,
resulting in errors by potentially many orders of magni-
tude. We will therefore use the algorithms developed in
[21] and which have been shown to overcome those
problems. Thanks to this new approach, we can therefore
assume that P and Q are accurate to a high precision up to
large multipole order. The focus here is on whether this
high precision is retained in the computation of the T-
matrix and the physical properties.

3. T-matrix convergence

In contrast to Mie theory where only the series need
truncating (at n¼N), we here have one additional source
of potential problems associated with the inversion of
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infinite matrices and their necessary truncation before
inversion. In practice, once P and Q are calculated to a
high precision up to multipole order NQ, the T- and R-
matrices are derived from Eq. (3) also up to multipole
order NQ using the inversion procedure described in [21].
From this step, there are two separate factors that may
result in incorrect entries. Firstly, because these matrices
are in theory infinite, there is no guarantee that the T-
matrix is correct up to order NQ. Secondly, any matrix
inversion, especially for large matrices, can result in loss of
precision because of ill-conditioning (whereby minute
changes in the value of the Q-matrix may result in large
errors in its computed inverse).

We first consider issues arising from the truncation of
the matrix. The truncation of P and Q at some order NQ

may affect the matrix elements of T (and R) at some lower
order, perhaps even at all orders. For the EBCM method to
be valid and convergent, the matrix elements must scale in
such a way that the higher order elements do not affect
the lowest order elements of the inverted matrix (within
some precision). One can then in principle choose NQ large
enough to ensure that the inverted matrix is correct (and
unaffected by NQ) up to at least some order NoNQ . To
quantify this, we will study the relative convergence of a
given matrix element or physical property A, by computing
the relative error ϵ of A (as a function of N or NQ) with
respect to the converged value A1 (obtained for large N or
NQ), namely:

ϵA NQ
� �¼ AðNQ Þ�A1

A1

����
����: ð5Þ

To illustrate this, we study in Fig. 1 the relative
convergence as a function of NQ of the first row and
column of T22;m ¼ 0, which relates incident and scattered
electric multipoles (b and q). For example, T22;m ¼ 0

11 relates
q10 to b10 and physically corresponds to the electric dipolar
polarizability along the symmetry axis. It is clear that to
obtain an accurate value for this low order element
(shown in bold in Fig. 1(a)), larger P and Q matrices must
be calculated, in stark contrast with Mie theory where this
term is always correct from N¼1 (for spherical shapes P
and Q become diagonal, hence Eq. (3) does not mix
multipolar orders). Denoting by Δ the number of extra
multipoles required for P and Q to ensure that T22;m ¼ 0

11 has
fully converged, we see that Δ is of the order of 32 in the
example of Fig. 1(a) (xmax ¼ 10, h¼10, s¼ 1:5þ0:02i). The
same applies to R22;m ¼ 0

11 (bold line in Fig. 1(c)), with the
same number of extra multipoles required.

In practice, we may need a T- or R-matrix that is
accurate for all matrix elements Tm

nk;R
m
nk up to some multi-

pole order N. From the results of Fig. 1, and similar studies
for other parts of the matrices (i.e. other blocks, other m,
and other indices n; k), the following conclusions can be
drawn:
�
 For matrix elements with kZn (i.e. upper triangular
parts of the matrices, see Fig. 1(a) and (c)), the relative
convergence is very similar to that of T22;m ¼ 0

11 . Although
NQ ¼ k is the minimum required to calculate Tnk, a
larger value of NQ ¼ kþΔ is needed to obtain full
convergence, where Δ is slightly smaller but of the
same order as for T22;m ¼ 0
11 (it goes down from Δ¼ 32

for k¼1 to Δ¼ 24 for larger k). Convergence is obtained
with a high accuracy close to the best obtainable in
double precision.
�
 For matrix elements with nZk (i.e. lower triangular
parts of the matrices, see Fig. 1(b) and (d)), the best
relative convergence is obtained for NQ �maxðn;ΔÞ.
This means that for NZΔ, no extra multipoles (i.e.
NQ ¼N) are necessary to obtain the best possible
accuracy. This limiting error, corresponding to the
plateauing of the relative error in Fig. 1(b) and (d)), is
higher than that obtained for the elements in the upper
part of the matrix, of the order of 10�12 for Tnk and
further increasing with n for Rnk.

This plateau in convergence can be attributed to loss of
precision in the inversion step, i.e. even if NQ is large
enough, the linear system to obtain T is slightly ill-
conditioned, resulting in a loss of precision of 3–4 orders
of magnitude in this case. At large NQ, the inclusion of
extra matrix elements in Q should not influence the lower-
order elements, but this “noise” of the order of the
machine epsilon (� 10�16) is magnified by the ill-con-
ditioning, resulting in a plateauing of the relative error at
10�12. This figure should be viewed as the accuracy of the
method (and is parameter dependent). Rather than relying
on the imperfection of double precision floating point
arithmetic and to make sure that this problem is always
detected, one can instead deliberately add noise to the
matrix elements of Q. This is the procedure we adopted in
the rest of our convergence studies with a random noise
with a maximum relative magnitude of 10�15 added to
every element of Q. This small noise is magnified by any
ill-conditioning during inversion and allows us to obtain
the true converged precision from the plateau region at
large NQ.

In this context, we also note that inversion in quadruple
[15] or arbitrary precision [17] arithmetic or pre-
conditioning of the linear system would be needed to
further improve the T-matrix precision. It is worth noting
here that the condition number, which is often used to
assess how well a matrix may be inverted, does not
provide the full picture when it comes to inversion. For
example in the case of Fig. 1, the condition number of
Q 22;m ¼ 0 is terrible at � 1054, yet only 3 digits precision is
lost since the worst precision for the T22;m ¼ 0 matrix
elements is 10�12 (when NQ is large enough). In fact, for
the linear system in Eq. (3) for spheroidal particles, the
inversion algorithm plays a critical role in minimizing ill-
conditioning effects. We here use the mldivide operator
of MATLAB on the transposed matrices as recommended in
[21]. Using mrdivide results in extreme errors (by many
orders of magnitude). The choice of the right inversion
algorithm is here equivalent to pre-conditioning the linear
system.

Finally, we note that in the case of the lower part of R,
the effect of ill-conditioning is more extreme, and the loss
of precision during inversion increases with increasing n,
with a loss of up to 13 orders of magnitude for n¼49 in the
example shown in Fig. 1(d). We will come back to this
later since R is only used as an intermediate to compute
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near-fields and focus on the more commonly studied T-
matrix for the moment.

The conclusions presented so far for a specific scatterer
were further confirmed by considering a wider range of
parameters size, aspect ratio, and refractive index. We in
particular studied how Δ and the converged precision ϵ
vary with the properties of the scatterer. This can be
assessed to a good approximation by considering the
convergence of a single matrix element, for example
T22;m ¼ 0
11 or T22;m ¼ 1

11 . Examples are presented in Fig. 2 and
Table 1. From those (and more extensive studies not
shown here), we conclude that the size xmax and magni-
tude of the refractive index jsj, and to a lesser extent the
aspect ratio h, all influence the value of Δ, which increases
as the value of those parameters increases. Their respec-
tive effect does not however appear to be independent of
each other. The converged precision remains very good
over a wide parameter range and then quickly deteriorates
when reaching certain limits, which can be viewed as the
current range of validity of the algorithms presented in
[21]. This limit typically corresponds to regimes where NQ

and Δ become too large for the EBCM to remain compe-
titive anyway. For low-index dielectric particles, this
occurs around xmax ¼ 30;h¼ 10 and xmax ¼ 20;h¼ 100.
For higher refractive index materials like the metallic
particles, this occurs earlier around xmax ¼ 20;h¼ 2 and
xmax ¼ 10;h¼ 100. It should be noted that thanks to the
improvements of [21], these limits are much larger than
what is typically considered computable with the T-matrix
EBCM method [15].

4. Symmetry and physical properties

In order to further support these conclusions, we will
now extend these results to more conventional conver-
gence tests based on the convergence of symmetry proper-
ties of the T-matrix [24–27] or of the computed physical
properties [2]. We start with the symmetry properties of
the calculated T-matrix that arise from optical reciprocity
[2,28]. In the case of spheroids, these are (MT denotes
matrix transpose of M)

T11
� �T

¼ T11

T22
� �T

¼ T22

8>><
>>: and

T12
� �T

¼ �T21

T21
� �T

¼ �T12

8>><
>>: ð6Þ

The relative errors in the symmetry for each matrix
element of T22;m ¼ 1 are shown in Fig. 3(a) for the same
particle as in Fig. 1. This plot confirms the previous
conclusions: firstly, although the T-matrix is calculated
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Table 1
Summary of parameters governing the convergence of the EBCM method for spheroids of various sizes (xmax from 0.1 to 30), aspect ratios (h from 1.01 to

100), and refractive indices (s). These are extracted automatically from plots of the convergence of T22;m ¼ 1
11 , examples of which are shown in Fig. 2. They are

here given as Δ (α), where Δþ1 is the multipole order for which the converged plateau has been reached and α represents the accuracy of the converged
value in number of digits, i.e. α¼ � log10ϵ with ϵ being the limiting value of the relative error. Note that Δ is here likely to be slightly overestimated because
it is extracted automatically from the plots. Entries marked – are beyond the capabilities of our algorithm, as they require large NQ for which some entries
are beyond double precision floating points (i.e. smaller than 10�300 or larger than 10300). It is notable that the dependence of Δ on h is rather mild.

h Dielectric, s¼ 1:5þ0:02i Metal, s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4þ0:5i

p

xmax ¼ 0:1 1 3 10 30 0.1 1 3 10 20

1.01 5 (15) 7 (16) 8 (16) 10 (16) 14 (16) 7 (16) 8 (16) 9 (16) 10 (16) 13ð17Þ
1.2 7 (15) 10 (16) 13 (16) 22 (16) 53 (15) 9 (16) 13 (16) 17 (16) 25 (16) 26 (15)
2 8 (15) 13 (16) 18 (17) 29 (15) 82 (12) 10 (16) 16 (15) 26 (15) 39 (11) –

10 8 (17) 15 (16) 21 (17) 36 (15) – 10 (17) 20 (15) 30 (15) 48 (6) –

30 9 (17) 15 (16) 21 (17) 35 (15) – 11 (16) 20 (15) 29 (14) 50 (7) –

100 9 (16) 15 (16) 22 (17) 36 (15) – 10 (16) 20 (15) 30 (15) 52 (8) –

1
11
21
31
41
51
61

k

n

Δ
1 11 21 31 41 51 61 1 11 21 31 41 51 61

k
ε

10−0

10−4

10−8

10−12

10−16

Fig. 3. Relative error in the symmetry of T22;m ¼ 1 for the same prolate
spheroid as considered in Fig. 1: xmax ¼ 10, h¼10, and s¼ 1:5þ0:02i. This
relative error is computed as ϵ¼ 2 T22

nk �T22
kn

��� ���= T22
nk þT22

kn

��� ���. T is computed
with NQ¼70 multipoles, but the symmetry relations are only satisfied to
high precision up to N¼47. 500 quadrature points are used in (a), but
only 150 in (b) to demonstrate the effect of insufficient quadrature
precision. Similar plots are obtained for the other three blocks of the
matrix.
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with NQ¼70, it only satisfies the optical reciprocity sym-
metry relations up to about N� 47; and secondly the
method developed in [21] appears to be extremely accu-
rate, ensuring symmetry of all elements of the T-matrix
(up to N) with a relative accuracy of 10�12 or better. We
also use this example to caution about the effect of an
insufficient quadrature precision in the calculations of the
integrals in the P- and Q-matrices. This is exemplified in
Fig. 3(b), where a reduction in the number of quadrature
points clearly affects the precision of the results. It is
therefore paramount to ensure that the number of quad-
rature points is large enough, for example by checking the
matrix symmetry or that the results are independent of
the precise number chosen.

It is satisfying to know that one can ensure that every
single element of the T-matrix is correct to a high accuracy
and this could indeed be important in specific fundamen-
tal studies. In practice, however, one rarely requires
accurate convergence of all the elements of the T-matrix,
but only of the derived physical properties, such as
extinction cross-section or near fields. Some matrix ele-
ments in T or R may not be correct for larger n, but their
contribution to the actual properties of interest may in fact
be negligible. It is therefore equally important to study the
convergence of those properties and we will here focus on
a representative selection of far- and near-field properties,
namely extinction and scattering cross-sections (orienta-
tion-averaged or not), surface-averaged electric field
intensity, 〈MLoc〉¼ 〈jEj2= E0j j2〉, and electric field intensity
on the surface at the tip (A) of the prolate spheroid,
MLocðAÞ. To avoid any issues with the Rayleigh hypothesis
[28], the surface fields are calculated from the internal
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field expansion and the boundary conditions are then used
to deduce the outside surface fields [8].

Such a study is summarized in Fig. 4 for a number of
representative cases. The convergence is again studied by
considering the relative error compared to the converged
result (i.e. obtained for large N with NQ ¼NþΔ) with the
introduction of random noise in P and Q to assess the
stability of the method. As before, convergence to a high
precision is obtained in the majority of cases, with
some loss of precision in the most challenging cases
at the boundary of the applicability of the method (e.g.
xmax ¼ 10, h¼10, s¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4þ0:5i

p
). We also compare in

Fig. 4 the exact approach derived here (using NQ ¼NþΔ)
with a more direct approach where N¼NQ . It is interest-
ing to see that, despite the fact that the higher order
elements of the T- and R-matrices are incorrect when
N¼NQ , the correct convergence is nevertheless obtained
as N increases, indicating that the incorrect elements do
not affect the results. This suggests that checking conver-
gence with NQ ¼N would be more efficient in practice, as
convergence would be obtained with a smaller value of NQ,
thus saving computing resources. NQ ¼NþΔ should only
be necessary in fundamental studies where the validity of
the entire T-matrix is required.

Finally, one should also consider the possibility that the
entire method converges to an incorrect solution, because
of systematic numerical errors. To exclude this, the con-
verged values were compared to those obtained with
arbitrary precision arithmetic, where numerical problems
can be detected and avoided by increasing the floating-
point precision as needed [17]. As shown in Fig. 4, the
double-precision results do converge to the correct solu-
tion, with exactly the precision predicted by introducing a
small noise in P and Q.

A number of additional observations can be made from
the results of Fig. 4. Once the numerical difficulties and the
problems of matrix truncation are overcome, we have
access to the intrinsic convergence properties of the
various series as a function of multipole order. As is the
case for Mie theory [14], more multipoles are needed as
the particle size is increased, as expected from physical
arguments. Also, some properties require more multipoles,
for example the near fields when compared to far-field
properties. Interestingly, the orientation-averaged cross-
sections, which have no equivalent in Mie theory, converge
faster than their non-averaged analogs. A major difference
with Mie theory is that the number of multipoles is here
strongly dependent on the refractive index: more are
required for larger jsj. This could make the applicability
of the method to large refractive index spheroidal particles
more difficult.

We also note that the high accuracy of these calcula-
tions enables the detailed study of the validity of the
Rayleigh hypothesis [28] in the vicinity of the particle. We
have deliberately avoided this discussion here as it is
outside the scope of this paper and would merit a
dedicated study.

5. Discussion and conclusion

The results in this paper would naturally extend to the
case of oblate spheroids, but not necessarily to other
shapes. As shown in [17], the dominant matrix elements
of Q show a scaling behavior that is very specific to
spheroids (and this is at the heart of the numerical
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problems of conventional EBCM implementations for
spheroids). The convergence as a function of truncation
NQ could therefore be expected to be very different for
other shapes. This would require a dedicated study
although no numerical-problem-free implementations of
the EBCM, similar to the one used here for spheroids, exist
in the general case.

Our results demonstrate that in the special case of
spheroids, the T-matrix/EBCM method exhibits conver-
gence to a very high accuracy, even for relatively large
and elongated particles (i.e. xmax ¼ 10;h¼ 10…100). Con-
trary to what has been reported so far [15,17], this can
moreover be achieved using standard double-precision
arithmetic, providing an adequate implementation is used
to avoid numerical errors in the integral computations and
matrix inversion. Moreover, we have shown that the
precision of those results can be assessed without needing
to use other methods to compare against, by studying the
convergence of the relative error or the symmetry of the T-
matrix.

We believe that this study brings the prospect of
routine, fast, accurate, and numerically stable electromag-
netic calculations on spheroidal particles and will bring
the EBCM/T-matrix implementation of [21] alongside Mie
theory in the electromagnetic modelling toolbox of scien-
tists of diverse fields.
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