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We propose, describe, and demonstrate a new numerically stable implementation of the

extended boundary-condition method (EBCM) to compute the T-matrix for electromag-

netic scattering by spheroidal particles. Our approach relies on the fact that for many of

the EBCM integrals in the special case of spheroids, a leading part of the integrand

integrates exactly to zero, which causes catastrophic loss of precision in numerical

computations. This feature was in fact first pointed out by Waterman in the context of

acoustic scattering and electromagnetic scattering by infinite cylinders. We have recently

studied it in detail in the case of electromagnetic scattering by particles. Based on this

study, the principle of our new implementation is therefore to compute all the

integrands without the problematic part to avoid the primary cause of loss of precision.

Particular attention is also given to choosing the algorithms that minimise loss of

precision in every step of the method, without compromising on speed. We show that

the resulting implementation can efficiently compute in double precision arithmetic the

T-matrix and therefore optical properties of spheroidal particles to a high precision, often

down to a remarkable accuracy (10�10 relative error), over a wide range of parameters

that are typically considered problematic. We discuss examples such as high-aspect ratio

metallic nanorods and large size parameter ð � 35Þ dielectric particles, which had been

previously modelled only using quadruple-precision arithmetic codes.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The theoretical modelling of light scattering by parti-
cles has a long history, with the first formal analytical
solutions provided by Lorenz and Mie for spherical
scatterers [1]. Despite the success of the Lorenz–Mie
theory in describing many aspects of light scattering in
a wide variety of contexts, ranging from astrophysics to
biology (for a comprehensive review, see the anniversary
monograph of the Mie theory by Mischenko [1]), there are
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fundamental aspects of the interaction between an elec-
tromagnetic wave and a particle that can only be
accounted for with a non-spherical particle geometry [2].
With arguably the simplest departure from a spherical
shape, spheroidal particles have been thoroughly investi-
gated with a variety of methods, starting from the simplest
Rayleigh approximation based on an electrostatics solu-
tion [3], which has been refined to include higher order
corrections [4] such as radiative corrections [5,6] and
dynamic depolarisation [7,8] through to exact analytical
[9–12] or numerical [13–15] solutions of the fully retarded
Maxwell equations. Spheroids have thus provided the
archetype problem of scattering by a non-spherical parti-
cle against which a new numerical method can be tested
for accuracy and performance. Indeed, the existence of
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rigorous, practically analytical solutions of Maxwell equa-
tions [11], supplemented by a wealth of reliable bench-
mark results using the T-matrix method [16], provide
ample justification for the study of spheroidal scatterers,
even as a first approximation of actual particle shapes.

It is in this context that we revisit here the problematic
numerical calculation of T-matrix integrals for spheroids
with Waterman’s extended boundary-condition method
(EBCM), widely used in theoretical studies for its simila-
rities with the analytical Lorenz–Mie theory, as well as in
applied problems thanks to the availability of efficient
numerical implementations [17]. This work aims to
improve the calculation of light scattering by spheroids
in the EBCM, such that it may be considered a reliable
benchmark over a large range of particle sizes, composi-
tion and aspect ratios, as with Lorenz–Mie theory for
spheres. In its current formulation [18], the EBCM
requires the calculation of matrix elements as integrals
over the geometrical shape of the particle. A matrix
inversion is then required to obtain the T-matrix. This
scheme suffers from a number of numerical problems,
especially for large and/or high aspect ratio particles.
To date, the only way around these is to carry out
computations with extended precision arithmetic
[19,20], although these increase computational complex-
ity and times. Revisiting the original EBCM formulation,
Waterman was first to remark [21] that in the case of
spheroids, the numerical evaluation of such integrals may
suffer a dramatic loss of precision associated with exact
cancellations of (large parts of) the integrand. A formal
account of such cancellations, and their detrimental con-
sequence on the numerical precision of the EBCM, was
recently given in [20]. From this study, it was also
revealed that, provided the matrix elements for spheroids
could be accurately determined, the resulting matrices
would be well-behaved, and in particular could be
inverted without introducing additional numerical pro-
blems, even at large aspect ratios.

The detailed study of the cancellations highlighted that
particular terms in the Laurent series expansion of the
integrand are responsible for the problematic behaviour; in
this work we seek to reformulate the integrals such that
these problematic terms are removed. The integrals can then
be computed to high accuracy using standard double preci-
sion arithmetic over a wide range of particle parameters.

2. T-matrix method

2.1. General principle

The T-matrix method [22] is a general approach to
electromagnetic scattering aimed at finding the linear
relationship between incident and scattered fields for
scatterers of arbitrary shape, and for in principle any
incident field. The most common approach is to expand
the fields (respectively incident, scattered and internal) in
a basis of vector spherical wavefunctions (VSWFs), as

EInc ¼ E0

X
n¼ 1 . . .1

9m9rn

anmMð1Þnmðk1rÞþbnmNð1Þnmðk1rÞ, ð1Þ
ESca ¼ E0

X
n¼ 1 . . .1

9m9rn

pnmMð3Þnmðk1rÞþqnmNð3Þnmðk1rÞ, ð2Þ

EInt ¼ E0

X
n¼ 1 . . .1

9m9rn

cnmMð1Þnmðk2rÞþdnmNð1Þnmðk2rÞ, ð3Þ

where k1 is the wavevector in the surrounding medium,
k2 is the wavevector in the scatterer, Mð1Þ and Nð1Þ are the
magnetic and electric regular (at the origin) VSWFs, and
Mð3Þ and Nð3Þ are the irregular magnetic and electric
VSWFs that satisfy the radiation condition for outgoing
spherical waves (see Ref. [16] for further details).
The subscripts m and n index the projected and total
angular momentum, respectively.

The matrix T expresses the linear relation between the
coefficients ðp,qÞ and ða,bÞ, as

p

q

 !
¼ T

a

b

� �
, ð4Þ

where the expansion coefficients are grouped in column
vectors, e.g. a¼ ðanmÞ, and T in principle contains all the
information about the scatterer (at a given wavelength).
It allows for example for problems of analytical averaging
over all orientations [18,23–27] or solving multiple scattering
by ensemble of particles [26–28]. The most-used method to
calculate the T-matrix is the extended boundary-condition
method (EBCM) also called the null-field method, where the
incident and internal fields, and the internal and scattered
fields are related by some matrices P, Q, as

p

q

 !
¼�P

c

d

� �
, ð5Þ

a

b

� �
¼Q

c

d

� �
: ð6Þ

We then obtain T from

T¼�PQ�1: ð7Þ

The matrices are typically written in block notation as

Q ¼
Q 11 Q 12

Q 21 Q 22

 !
, ð8Þ

where each block is an infinite square matrix, which is in
practice truncated to a 2N � 2N matrix (N then represents
the maximum multipole order n in the series expansions).
The matrix elements in P, Q are given by surface integrals
over the particle boundary as derived for example in
Ref. [16, Section 5.8].

2.2. Particles with symmetry of revolution

For particles with symmetry of revolution, the expan-
sion coefficients with different m values are entirely
decoupled, and one can then solve the problem for each
value of m, where m can be viewed as a fixed parameter
(which will therefore be implicit in most of our nota-
tions). Moreover, we have [16, Section 5.2.2]

Tij
nk9�m

¼ ð�1Þiþ jTij
nk9m

ð9Þ
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and therefore only mZ0 values need to be considered in
the calculations of T. Note that we also have

T12
nk ¼ T21

nk ¼ 0 if m¼ 0: ð10Þ

In addition, the surface integrals reduce to line inte-
grals and we have recently proposed a number of further
simplifications [29].

Following Ref. [29], we define

K1
nk ¼

Z p

0
dy sin ypndkxyxnc0k, ð11Þ

K2
nk ¼

Z p

0
dy sin ypndkxyx0nck, ð12Þ

L1
nk ¼

Z p

0
dy sin ytndkxyxnck, ð13Þ

L2
nk ¼

Z p

0
dy sin ydntkxyxnck, ð14Þ

where x¼ k1rðyÞ is the size parameter, rðyÞ describes the
generatrix in polar coordinates, xy ¼ dx=dy, dn � dn

0mðyÞ is
the Wigner d-function (proportional to the associated
Legendre functions), tn � ddn=dy, pn ¼mdn=sin y (note
that pndk ¼ pkdn), ck �ckðsxÞ,xn � xnðxÞ, where c and x
are the regular Riccati–Bessel function, and the Riccati–
Hankel function of the first kind, respectively (see Ref.
[16] for further details), and s¼ k2=k1 is the relative
refractive index. The integrals K1

nk and K2
nk are used to

calculate Q 12 and Q 21 as

Q12
nk ¼ AnAk

s2�1

s
K1

nk, ð15Þ

Q21
nk ¼ AnAk

1�s2

s
K2

nk, ð16Þ

where An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ1Þ=ð2nðnþ1ÞÞ

p
. Off-diagonal ðnakÞ

terms of Q 11 will be calculated from

Q11
nk ¼

iAnAkðs
2�1Þ=s

nðnþ1Þ�kðkþ1Þ
L5

nk, ð17Þ

where

L5
nk ¼ ½nðnþ1ÞL2

nk�kðkþ1ÞL1
nk�

¼

Z p

0
dy sin y½nðnþ1Þdntk�kðkþ1Þtndk�xyxnck: ð18Þ

For the other cases, we will use alternative expressions
(to those of [29]) that are better suited to our problem
here. Explicitly, for the off-diagonal terms of Q22

nk , we use

Q22
nk ¼

iAnAkðs
2�1Þ=s

nðnþ1Þ�kðkþ1Þ
L6

nk, ð19Þ

where

L6
nk ¼ ½nðnþ1ÞL8

nk�kðkþ1ÞL7
nk� ð20Þ

with

L7
nk ¼

Z p

0
dy sin ytndkxy x0nc

0
kþnðnþ1Þ

xnck

sx2

� �
, ð21Þ

L8
nk ¼

Z p

0
dy sin ydntkxy x0nc

0
kþkðkþ1Þ

xnck

sx2

� �
: ð22Þ
For the diagonal terms, we use the original expressions
given in [16, Section 5.8.3] to obtain

Q11
nn ¼�

i

s
ðAnÞ

2 ~L
1

n, ð23Þ

Q22
nn ¼�

i

s
ðAnÞ

2
½ ~L

2

nþðs
2�1Þnðnþ1Þ~L

3

n�, ð24Þ

with

~L
1

n ¼

Z p

0
dy sin yðpnpnþtntnÞðx0ncn�sxnc0nÞ, ð25Þ

~L
2

n ¼

Z p

0
dy sin yðpnpnþtntnÞðsx0ncn�xnc0nÞ, ð26Þ

~L
3

n ¼

Z p

0
dy sin ytndnxy

xncn

sx2
: ð27Þ

To calculate P we use the same integrals but replace
the Riccati–Hankel functions xnðxÞ with the regular
Riccati-Bessel functions cnðxÞ. For the purpose of this
work, it will also be beneficial to calculate Q from:

Q ¼ Pþ iU, ð28Þ

where, since xnðxÞ ¼cnðxÞþ iwnðxÞ, U is calculated as Q by
replacing xnðxÞ with the irregular Riccati-Bessel functions
wnðxÞ. In Ref. [20], we have shown that there is no loss
of precision associated with computing P. By using
Q ¼ Pþ iU, we therefore isolate the problems in the
calculation of U only. We note in passing that we recently
suggested [6] that U itself may be more physically mean-
ingful than Q in some instances.

Finally, in this paper, we will only consider spheroidal
particles for which

xðyÞ ¼
k1acffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 cos2 yþc2 sin2 y
p , ð29Þ

with semi-axes a and c (axis of symmetry).

2.3. Particles with mirror symmetry

For spheroids, the reflection symmetry with respect to
the equatorial plane results in a number of further
simplifications (see Ref. [16, Section 5.2.2]). Half of the
matrix entries are zero because of the symmetry in
changing y-p�y and the other integrals are simply twice
the integrals evaluated over the half-range 0 to p=2.
Explicitly, we have

P11
nk ¼ P22

nk ¼Q11
nk ¼Q22

nk ¼ 0 if nþk odd,

P12
nk ¼ P21

nk ¼Q12
nk ¼Q21

nk ¼ 0 if nþk even: ð30Þ

We then have a complete decoupling between the
even magnetic and odd electric multipoles on the one
hand and the odd magnetic and even electric multipoles
on the other hand (i.e. the matrices are block-diagonal
upon rearranging the multipoles in these two groups).
We can therefore rewrite Eq. (6) as two independent sets
of equations, one for each. For illustration, we do it
explicitly in the following for even magnetic and odd
electric multipoles. The corresponding vectors of
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coefficients are denoted as

ae ¼

a2

a4

^

0
B@

1
CA, bo ¼

b1

b3

^

0
B@

1
CA, ð31Þ

and similarly for c, d, p, q.
We then have

pe

qo

 !
¼�Peo

ce

do

 !
, ð32Þ

ae

bo

 !
¼Q eo

ce

do

 !
, ð33Þ

where Q eo (similarly Peo) is defined as

Q eo
¼

Q 11
ee Q 12

eo

Q 21
oe Q 22

oo

 !
, ð34Þ

where Q 12
eo denotes the sub-matrix of Q 12 with even row

indices and odd column indices, and similarly for the
others. For the T-matrix, we therefore have

pe

qo

 !
¼ Teo

ae

bo

 !
, ð35Þ

where

Teo
¼�Peo

ðQ eo
Þ
�1: ð36Þ

A similar expression is obtained for the second group
of multipoles to define Toe. The problem of finding the
2N � 2N T-matrix up to multipole order N therefore
reduces to finding the two decoupled T-matrices Teo and
Toe, each of size N�N. This approach is particularly useful
to reduce computation times for the inversion step.

3. A problem with spheroids

3.1. Loss of precision in numerical integration

In the EBCM we have a method that is particularly
appealing in the case of axisymmetric particles. However,
in some situations such as metallic particles with a high
aspect ratio, numerical problems limit the accuracy of the
method. Often it is assumed that this is due to the matrix
inversion step (Eq. (7)) [19,30,31], yet it was shown
recently that in the case of spheroids, the problem lies
primarily in the calculation of the integrals prior to the
inversion [20]. Notably, leading terms in the Laurent
series1 expansion of the integrands can dominate by
many orders of magnitude, yet integrate identically to
zero. When numerically evaluating these integrals, the
limited precision available means that these terms dom-
inate the integral through a lack of proper cancellation,
even though they should make no contribution.

There are two main ways to formulate a solution to the
cancellation problem. The conceptually simpler one is to
implement the calculations using code with arbitrary
1 We refer to these expansions as Laurent series, since they are

power series with negative powers, but note that the expansions only

have a finite number of negative terms.
precision (AP), so the precision of the results can be
maintained. The drawbacks of this approach are that
arbitrary precision calculations are much slower than
double precision (DP) calculations, and they often require
rewriting the computer code used to carry out the
calculations. They are useful though in being able to
calculate the correct results, for checking the results of
other code. The other option to remove the cancellations
is to use different integrands which do not have cancella-
tions while integrating, but give the same integral. In this
case, where the cancellations are due to terms in the
series expansion that integrate identically to zero, this
amounts to rewriting the integrands so that the proble-
matic terms are removed. This is the approach that was
suggested by Waterman [21] in the case of elliptic
cylinders, and it is also the approach taken in this work.

3.2. Example of integral cancellations

The problematic term in the integrals is the product of
the radial functions, that is the Riccati–Bessel functions
xn, ck, and their derivatives x0n, c0k. We here provide a
rough outline of the approach we used for the product
xnck (as in the integral L1

nk, L2
nk, or L5

nk needed for Q11
nk ), and

the other products behave similarly. As mentioned earlier,
we start by noting that xn ¼cnþ iwn, and that P has no
cancellations, so the product cnck has no cancellations.
Hence we focus on the product wnck in the calculation of
U, which is the part that exhibits cancellations.

In this section we provide an outline of the method,
with further details provided in the Appendix. We use a
method based on the Laurent-series expansions of the
functions to calculate their product. The series expansions
are fully described in Appendix A, and are

wnðxÞ ¼
1

xn

X1
i ¼ 0

~aix
2i, ð37Þ

ckðsxÞ ¼ xkþ1
X1
i ¼ 0

~bix
2is2iþkþ1, ð38Þ

for some coefficients ~ai,
~bi whose value is not important in

this section. The product of these can be written as

wnðxÞckðsxÞ ¼
X1
q ¼ 0

~cqx2qþk�nþ1, ð39Þ

where

~cq ¼
Xq

i ¼ 0

~ai
~bq�is

2q�2iþkþ1: ð40Þ

If we focus on a specific example, such as n¼ 5, k¼ 1, then
the integral L1

51 takes the form

L1
51 ¼

Z p

0
dy sin yt5d1xy

~c0

x3
þ
~c1

x
þ ~c2xþ ~c3x3þ � � �

� �
: ð41Þ

For particles with a size parameter less than 1, the first
few terms strongly dominate the integrand. However, as
demonstrated numerically and analytically in Ref. [20],
the x�3 term actually exactly integrates to zero in the
special case of spheroids.
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As a result, the integral is often several orders of
magnitude smaller than the integrand, which causes
serious loss of precision issues when evaluating it
numerically. As ðn�kÞ increases, the problem becomes
particularly acute and even affects larger values of x, since
an increasing number of dominant terms in the series
integrate exactly to zero [20].

4. A new implementation

4.1. Series-based implementation

The solution to this problem is a priori simple. Rather
than computing the integrand, one should compute only
the part of it that does not integrate to zero, i.e. exclude
the leading terms that have been shown to integrate
exactly to zero. After integration, this should give the
same value, but not suffer from loss of precision issues.

More formally, we define the operator Pþ such that it
returns the part of a series expansion with non-negative
powers of x. That is, for example:

Pþ 1

x2
þ

1

x
þ1þxþx2þ � � �

� �

¼ 1þxþx2þ � � � : ð42Þ

Similarly P� returns terms with negative powers of x, and
ðPþ þP�Þf ¼ f . For convenience, we also denote

f þ �Pþ f , ð43Þ

f� �P�f : ð44Þ

Initially, we shall focus on the product wnck, which
appears for the calculation of Q11

nk in integral L5
nk given in

Eq. (18); the other cases follow naturally and we will
come back to them later. In Ref. [20] we demonstrated
that the part of the Laurent series of this product that
contributes to the integral is that with powers of x greater
or equal to �1. We therefore define

Fnkðs,xÞ ¼ xwnðxÞckðsxÞ ð45Þ

and wish to calculate Fþnkðs,xÞ ¼Pþ ðFnkÞ, so that Fþ =x will
be used in the cancellation-free integrand. Because of the
reflection symmetry for spheroids, we only need to
compute the Lj

nk integrals, and therefore Fþnk, for ðnþkÞ

even. Moreover, the dominant term in the series expan-
sion of Fnk is of order xkþ2�n; for kþ2�nZ0, we then
simply have F þnk ¼ Fnk, which can computed directly by
calculating the Riccati–Bessel functions. We therefore
focus on cases where nZkþ4 (the bottom-left part of
the matrix). It is worth noting that the calculation of Fþ

should be carried out without ever using any part of F�,
else subtracting those terms (which dominate in magni-
tude) will reduce the precision of our result. In other
words, calculating Fþ ¼ F�F� would result in severe loss
of precision as in most cases of interest F � F� and
FþooF�,F. The main difficulty is therefore to devise a
method of computing Fþ directly.

The most direct approach, which is the one used by
Waterman in Ref. [21], is to write explicitly the series
expansion of the product and keep only the part (þ)
devoid of cancellations, i.e. from Eq. (39) we deduce

Fþnk ¼ ðxwnðxÞckðsxÞÞþ ¼
X1

q ¼ qmin

~cqx2qþk�nþ2, ð46Þ

where qmin ¼ ðn�kÞ=2�1 (note that qminZ1 in cases of
interest where cancellations are present, i.e. when
nZkþ4). Full expressions for this series are given and
discussed in Appendix B. The above series expansion for
Fþnk can be computed numerically by truncating it when
additional terms are smaller than the required accuracy
(machine epsilon for double precision in our implementa-
tion). To check the numerical stability of this approach,
we have compared in Fig. 1 the double precision results
for Fþnkðs,xÞ with a similar computation in arbitrary preci-
sion arithmetic, where the exact accuracy to double
precision (around 16 digits) can be ensured. From Fig. 1,
it is clear that the computations suffer from loss of
precision for larger x (typically xZ10), which is not
unexpected for a Taylor expansion. However, even for
small x where such series expansions should converge
rapidly, there is also a clear numerical problem when 9s9
approaches 1. In fact, if high precision is required, this
problem even affects values of s� 1:5, which is clearly
undesirable. Further investigations revealed that this
problem is related to additional analytic cancellations
occurring in the computation of the coefficients ~cq when
s¼1, namely ~cq ¼ 0 for qrn�k�2 if s¼1 (see Appendix C
for further discussions of these).

In order to circumvent this problem, we developed a
method of computing this series, which isolates the
problems associated with s¼1 and avoids the associated
numerical loss of precision. The method is rather techni-
cal and it is described in full in Appendix B. As shown in
Fig. 2, the problem around 9s9� 1 can be fully overcome.
With a relative accuracy as high as 10�13, this approach
then appears to be valid for all s, for small x and up to
x� 10. We have thus obtained a method of computing Fþnk

to high accuracy. However, two issues remain to be
addressed. First, for larger size parameter x, the method
still suffers from severe loss of precision in part of the
matrix (small n). Second, the computation of the series for
Fþ can be relatively time-consuming and will scale
quadratically as N2, where N is the maximum multipole
order for the T-matrix computation. In the following
section we present a complementary method of calcula-
tion for the matrix elements based on recursion, and show
that these two methods can work together to alleviate
these limitations.

4.2. Stable recursion relation between matrix elements

In order to reduce the computation demands to a
linear scaling with N, we have also developed additional
schemes based on recursion relations on Fþnk. As we shall
see, this approach will also circumvent the problem of
loss of precision for large x/small n.

One possible approach is to use recursion relations of
the Bessel functions, such as

wn�1ðxÞþwnþ1ðxÞ ¼
2nþ1

x
wnðxÞ, ð47Þ
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arbitrary precision result. Only relevant cases are shown: nþk even and nZkþ4, up to relatively large n (max of Nþ1¼ 61). Three values of x (size

parameter) are tested here x¼0.1 (left), x¼1 (middle), and x¼10 (right); along with two values of the relative refractive index s¼ 1:5þ0:02i (bottom)

and s¼1.1 (top). The latter highlights the problem of loss of precision for low k, high n, which can be traced back to specific cancellations when s¼1.
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Fig. 2. Same as Fig. 1, but with the optimised implementation described in Appendix B designed to analytically compute the problematic terms

associated with s¼1. Extremely high accuracy (13 digits) is now achieved across the whole matrix, except for large x (typically Z10), where the low n

part of the matrix still suffers from serious loss of precision. These can be circumvented by using the recursion-based scheme presented in Section 4.2.
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Fig. 3. A comparison of the accumulated error (represented as a, the
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directions, compared to values calculated by the series in AP, for the

elements of Fþ for x¼0.1, s¼ 1:5þ0:02i. The different directions all have

different initial values that must be populated using the series (Section

4.1), which are marked in black. Entries which do not exhibit cancella-

tions (or are not calculated as nþk is odd) are shown in white, and those

which do not have cancellations, but which are needed for the recursion,

are in grey. For each direction, there is a schematic, showing how to

calculate an entry (green circles) from three known values (red squares)

using the recursion relation of Eq. (51). These are the relations used to

populate the matrix. For the (a) direction, we need the last two rows,

and the first column. For the (b) direction we require the first two

columns, and the last row. The (c) direction needs the last row and the

subdiagonal, while the (d) direction needs the first column and the

subdiagonal. Values of a less than zero (for which the order of

magnitude is incorrect) are shown as zero. (For interpretation of the

references to color in this figure caption, the reader is referred to the

web version of this article.)
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which implies

Fnþ1,k ¼
2nþ1

x
Fn,k�Fn�1,k, ð48Þ

from which we deduce by considering Taylor expansions
that

Fþnþ1,kðxÞ ¼
2nþ1

x
ðFþn,kðxÞ�Fþn,kð0ÞÞ�Fþn�1,kðxÞ: ð49Þ

However, for small x this approach fails, as computing the
difference Fþn,kðxÞ�Fþn,kð0Þ leads to a loss of precision, which
accumulates during the recursion. To avoid this problem,
it is necessary to obtain a recursion relation on Fnk that
does not involve any multiplication or division by x. This
is achieved by combining Eq. (47) with the equivalent one
for c, namely

ckþ1ðsxÞþck�1ðsxÞ ¼
2kþ1

sx
ckðsxÞ, ð50Þ

which leads to

Fþnþ1,kþFþn�1,k ¼ s
2nþ1

2kþ1
ðF þn,kþ1þFþn,k�1Þ: ð51Þ

Note that the above recursion is also valid for Fnk itself.
In order to implement this recursion, we still need

initial conditions, which require evaluation of some of the
Fþnk using the series-based method discussed earlier. For
example, if we solve for Fþnþ1,k, the matrix is filled from
top (small n,k) to bottom (large n) and only requires to
compute as initial conditions the first column (k¼1) and
the sub-diagonal (n¼ kþ2, which is trivial since
Fþnk ¼ Fnk). However, this approach, arguably the most
natural, results in a significant accumulation of loss of
precision during the recursion as shown in Fig. 3(d). There
are at least three alternative approaches to fill the matrix
recursively, and their respective accuracies are compared
in Fig. 3. From this, we have therefore chosen to solve for
Fþn,k�1 (Fig. 3(c)), which appears to be numerically stable
and requires the fewest initial entries (the last row,
n¼Nþ1, and the sub-diagonal). Moreover, it provides a
method of calculating the entire Fþ matrix for large x,
where the series-based calculation failed for small n. One
simply needs to choose N large enough so that the last
row n¼Nþ1 can be computed accurately via series
expansions. The recursion scheme is then used to fill the
rest of the matrix with no loss of precision. This is further
illustrated in Fig. 4 in the case where x¼35. With this
method, F þnk can therefore be computed rapidly, in double
precision arithmetic, with almost no loss of precision for
all the n,k values where cancellations occur.

4.3. Other products and integrals

The other blocks of the matrix Q (or U) can be
computed in a similar way. For L5

nk, we wrote the integral
with the cancellation-free integrand for U as

L5
nk ¼

Z p

0
dy sin y½nðnþ1Þdntk�kðkþ1Þtndk�

xy
x

Fþnkðs,xÞ:

ð52Þ

Following the findings of Ref. [20], we may rewrite the
other integrals that we need with cancellation-free
integrands for U as follows:

K1
nk ¼

Z p

0
dy sin ypndk

xy
x
½xwnc

0
k�
þ , ð53Þ

K2
nk ¼

Z p

0
dy sin ypndk

xy
x
½xw0nck�

þ , ð54Þ

L7
nk ¼

Z p

0
dy sin ytndk

xy
x

x w0nc
0
kþnðnþ1Þ

wnck

sx2

� �� �þ
,

ð55Þ

L8
nk ¼

Z p

0
dy sin ydntk

xy
x

x w0nc
0
kþkðkþ1Þ

wnck

sx2

� �� �þ
:

ð56Þ

To obtain these, all the cancellation-free integrands
can be deduced from FþnkðxÞ ¼ ½xwnðxÞckðsxÞ�þ computed
for nþk even as explained before.

For K1
nk and K2

nk, which are non-zero for nþk odd, we
may use the relations for Riccati–Bessel functions:

ð2kþ1Þc0kðsxÞ ¼ ðkþ1Þck�1ðsxÞ�kckþ1ðsxÞ, ð57Þ

ð2nþ1Þw0nðxÞ ¼ ðnþ1Þwn�1ðxÞ�nwnþ1ðxÞ: ð58Þ
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Fig. 4. Error in F þnk for s¼ 1:5þ0:02i and a relatively large x¼35,

computed using series expansions for the last row ðn¼Nþ1Þ and the

recursion scheme (c) of Fig. 3. We here compare two cases: N¼30 (top)

and N¼80 (bottom). Because of the loss of precision in the series

expansion at low N for large x, one must ensure that N is large enough.

In this case, N¼80 results in an accuracy of better than 11.5 digits over

the entire matrix, while for N¼30 the result is never correct to within 4

orders of magnitude.
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from which we deduce

½xwnc
0
k�
þ ¼
ðkþ1ÞFþn,k�1�kFþn,kþ1

2kþ1
, ð59Þ

½xw0nck�
þ ¼
ðnþ1ÞFþn�1,k�nFþnþ1,k

2nþ1
: ð60Þ

These expressions only need to be used when cancella-
tions are present, i.e. for nZkþ3 [20].

For, L7
nk and L8

nk, which are non-zero for ðnþkÞ even, we
in addition use Eq. (47) for wnðxÞ and Eq. (50) to deduce

x w0nc
0
kþkðkþ1Þ

wnck

sx2

� �� �þ

¼
1

ð2nþ1Þð2kþ1Þ

� fðnþkþ1Þ½ðkþ1ÞF þn�1,k�1þkFþnþ1,kþ1�

þðk�nÞ½ðkþ1ÞFþnþ1,k�1þkFþn�1,kþ1�g, ð61Þ

x w0nc
0
kþnðnþ1Þ

wnck

sx2

� �� �þ
¼
1

ð2nþ1Þð2kþ1Þ

� fðnþkþ1Þ½ðnþ1ÞFþn�1,k�1þnFþnþ1,kþ1�

þðn�kÞ½ðnþ1ÞFþn�1,kþ1þnFþnþ1,k�1�g: ð62Þ

Again, these expressions only need to be used when
cancellations are present, i.e. for nZkþ2 [20] (note that
this range is larger than for L5).

All the cancellation-free integrands can therefore be
computed from the knowledge of F þnkðxÞ for 0rn,
krNþ1, the computation of which was described in
Section 4.2.

When implementing this approach, we noted for small
size parameters a minor loss of precision (compared to
those normally seen in the lower part of Q) on the
diagonal of P11, i.e. in integral ~L

1

n (Eq. (25)). This can be
traced to the cancellation of the leading order term
ðpx2nþ1Þ in the radial part of the integrand: c0nðxÞcn

ðsxÞ�scnðxÞc0nðsxÞ (note that it cancels out when comput-
ing the integrand itself, not upon integration as before).
To avoid this issue, we simply rewrite this integrand in a
form where the leading order term does not appear. For
this, we use the relations:

c0nðxÞ ¼�cnþ1ðxÞþ
nþ1

x
cnðxÞ, ð63Þ

c0nðsxÞ ¼�cnþ1ðsxÞþ
nþ1

sx
cnðsxÞ, ð64Þ

to arrive at

c0nðxÞcnðsxÞ�scnðxÞc
0
nðsxÞ

¼ scnðsÞcnþ1ðsxÞ�cnþ1ðxÞcnðsxÞ: ð65Þ

Note that both quantities on the right-hand-side are now
of order x2nþ3, and this solves the problem.

4.4. Summary of the procedure

For clarity, we here summarise the entire procedure
for calculating the matrices P and Q with minimal loss of
precision, up to multipole order N. The integrals are
computed as in most T-matrix implementations using a
Gaussian quadrature with T points denoted yi and asso-
ciated weights wi ði¼ 1: :TÞ. Thanks to the reflection
symmetry, half of the entries are zero, and for the others
the integration range can be reduced to 0ryrp=2 and
we choose T even, such that

Pij
nk ¼ 2

XT=2

i ¼ 1

f ðyiÞwi, ð66Þ

where the integrand for P11
nk for example is

f ðyiÞ ¼ CnkxyðyiÞAnkðyiÞ½cnðxiÞckðsxiÞ�: ð67Þ

Note that the sin y factor is contained in the weights, that
Cnk is a constant and that AnkðyiÞ represents the angular
function dependence, which in the case of P11

nk is

AnkðyiÞ ¼ nðnþ1ÞtkðyiÞdnðyiÞ�kðkþ1ÞtnðyiÞdkðyiÞ: ð68Þ

For P, there is no loss of precision, and the entire matrix
can be computed with these standard methods.

Qij
nk is then obtained from Qij

nk ¼ Pij
nkþ iUij

nk where for Uij
nk,

we now use the cancellation-free integrands described in
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Fig. 5. The relative error (characterised by a) for P (left) and Q (right) when computed in double precision with our proposed method, compared to

arbitrary precision, for m¼0 (top) and m¼1 (bottom). This is for a prolate spheroid of aspect ratio h¼4, with a large size parameter xmax ¼ 10, and

s¼ 1:5þ0:02i.
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Fig. 6. The relative error (characterised by a) for P (left) and Q (right) when computed in double precision with our proposed method, compared to

arbitrary precision, for m¼0 (top) and m¼1 (bottom). This is for a silver nanorod in a solvent of refractive index n¼1.33 at its dipolar localised plasmon

resonance ðl¼ 2560 nmÞ, modelled as a prolate spheroid with a¼10 nm, c¼200 nm (i.e. aspect ratio h¼20 and size parameter xmax ¼ 0:65), and

s¼ 1:02þ13:5i.
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Fig. 7. The error in T computed fully in double precision compared to

arbitrary precision, for m¼0 (top) and m¼1 (bottom). This is for a

prolate spheroid of aspect ratio h¼4, with a large size parameter

xmax ¼ 10, and s¼ 1:5þ0:02i.
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Fig. 8. The error in T computed fully in double precision compared to

arbitrary precision, for m¼0 (top) and m¼1 (bottom). This is for a silver

nanorod in a solvent of refractive index n¼1.33 at its dipolar localised

plasmon resonance ðl¼ 2560 nmÞ, modelled as a prolate spheroid with

a¼10 nm, c¼200 nm (i.e. aspect ratio h¼20 and size parameter

xmax ¼ 0:65), and s¼ 1:02þ13:5i.
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Section 4.3, for example for U11
nk :

f ðyiÞ ¼ CnkxyðyiÞAnkðyiÞF
þ

nkðxiÞ=xi: ð69Þ

In Eq. (69), we have replaced wnðxiÞckðsxiÞ with the
cancellation-free integrand FþnkðxiÞ=xi; this will not affect
the integrals as the part that has been removed integrates
identically to zero as shown in Ref. [20].

For each xi, we calculate the matrix FþnkðxiÞ as follows
(note that nþk is even, and we will compute it for 0rn,
krNþ1, which include extra terms that are needed for
the other integrals):
�
 For nrkþ2 (upper-right of the matrix), we simply
calculate FnkðxiÞ ¼ xiwnðxiÞckðsxiÞ and use F þnkðxiÞ ¼

FnkðxiÞ.

�
 For the last row, i.e. n¼Nþ1 and 0rkrN�4, we then

calculate Fþnk using the series expansion as described in
Appendix B. Note that for large size parameter, N must
be large enough for the series-based calculation to be
accurate. The accuracy of this step is easy to verify
during the calculation of the series, by comparing the
order of magnitude of the terms in the summation
to the final result. A warning can be issued if a loss
of precision occurred, and larger N values should
be used.
�
 We then use the recursion relation given in Eq. (51)
(solving for Fþn,k�1) and illustrated in Fig. 3(c) to
populate the rest of the matrix.

�
 The FþnkðxiÞ matrices can then be used to compute the

U11
nk for each desired value of the projected angular

momentum number m (typically 0rmrN) using the
Gaussian quadrature described above and in Eq. (66).

�
 The F þnkðxiÞ matrices are also used to compute the

cancellation-free integrands for the other blocks of
the matrix U as described in the previous section.

The entire Q-matrix can therefore be computed using
this method to a high accuracy using only double preci-
sion arithmetic. The P-matrix can also be computed to a
high precision using standard methods, as it does not
suffer from loss of precision in the integrals.

As an example, the accuracy of the P- and Q-matrices
for m¼0 and m¼1 computed with this method, as
compared to the arbitrary precision result, is shown in
Fig. 5 for a prolate spheroid with an aspect ratio of 4,
maximum size parameter xmax ¼ 10, and s¼ 1:5þ0:02i, up
to N¼60. It is clear that this procedure results in
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extremely accurate integrals even with double precision
arithmetic. It is very efficient at avoiding the troublesome
cancellations discussed earlier. Relative accuracies of
10�12 or better are achieved up to n¼25 and these remain
better than 10�8 for the largest n of the order of 60.
A similar plot is shown in Fig. 6 for a high aspect ratio
metallic nanoparticle (i.e. a nanorod).
Final Successive
4.5. Matrix inversion

A number of approaches have been proposed [30–32]
to solve the linear system to obtain the T-matrix (Eq. (7)),
and their respective numerical stability may strongly
depend on the structure of the Q-matrix, and therefore
Final Successive
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Fig. 9. A demonstration of the convergence behaviour for the proble-

matic case of high aspect ratio metallic nanoparticles (as in Fig. 8).

The extinction coefficient (QExt, which is the extinction cross-section,

normalised by the geometric cross-section pac) at resonance is calcu-

lated (only the dominant m¼0 case is included) using a standard DP

code, our new DP code, and AP codes (with inversion in double

precision). The left panel shows the relative error compared to an AP

value including inversion in AP (which is assumed to be the correct

result), as the multipole order N is increased from 4 to 40 in steps of 1.

The right panel shows the relative successive error (from N to Nþ1),

which corresponds to a typical convergence test in T-matrix computa-

tions. The values of QExt for N¼41 (to full double precision) are

14.0408863566895 (standard DP), 44.7992522913149 (new DP) and

44.7992522913331 (AP, including inversion).

Table 1
Values of orientation-averaged scattering and extinction coefficients, albedo ðo
h¼20 as in Fig. 9, and (B) for the x¼35 spheroid as in Fig. 10, considering

Ein ¼�318þ48:5i (i.e. silver at 2560 nm). The spheroid (A) is embedded in a so

convergence for the AP case is due to the fact the AP inversion was calculate

truncated.

Model Q sca Qext

A Standard DP – –

New DP 2.91644692911172 18.6590

AP 2.91644692910476 18.6590

B Standard DP – –

New DP 1.68191804051559 2.3411

AP 1.68179883363743 2.3411
on particle shape and refractive index. As pointed out in
Ref. [20], the matrix inversion step required to obtain the
T-matrix can be carried out with minimal loss of precision
in the special case of spheroids, provided that the
Q-matrix does not suffer from loss of precision during
integral evaluation and that the appropriate inversion
method is used. We found that an efficient and numeri-
cally stable method of carrying out this inversion is to
obtain Teo and Toe separately using block matrix inver-
sions [31,33,34] where matrix inversions are carried out
through a LU factorisation obtained from Gaussian elim-
ination with partial pivoting. This corresponds to the
¼QSca=QExtÞ, and value of N used, for (A) silver spheroid of aspect ratio

all 9m9rN. The value of the dielectric function of the spheroid (A) is

lvent with refractive index n¼1.33. The apparent low value of N to reach

d once on a large ((A) – N¼41, (B) – N¼81) matrix, after which T was

o N

– Not converging

264037057 0.156302202805849 31

264036833 0.156302202805662 7

– Not converging

8758579468 0.718403792468721 81

277033233 0.718371249381958 51
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Fig. 10. A demonstration of the convergence behaviour for the proble-

matic case of large size parameter particle. This is for xmax ¼ 35, h¼4,

s¼ 1:5þ0:02i, and focuses on Q1 (the orientation averaged extinction

coefficient, which is the extinction cross-section normalised by the

average projected surface area, when considering m¼0 only). A similar

plot was obtained in Ref. [26] using quadruple-precision codes. The left

panel shows the relative error compared to an AP value with inversion in

AP (which is assumed to be the correct result), as the multipole order N

is increased from 4 to 80 in steps of 1. The right panel shows the relative

successive error (from N to Nþ1), which corresponds to a typical

convergence test in T-matrix computations. In all cases with the new

code, FþnkðxÞ first were obtained up to Nþ1¼ 81, then truncated to the N

shown in the figure for integration, inversion and calculation of Q1.

As shown in Fig. 4, for large x the calculation of the Bessel functions

requires going to high N, hence starting from N¼80 in this case. The

values of Q1 for N¼81 are 278729.622910794 (standard DP),

5.64964087428721 (new DP) and 5.64970167842576 (AP, including

inversion).



Table 2
Values of scattering and extinction coefficients, albedo ðo¼QSca=QExtÞ, and value of N when reaching convergence or pseudo-convergence (lowest

relative difference in coefficients for successive values of N), for the Model 1 of [35]. This is a prolate spheroid with s¼ 1:55þ0:01i, xmax ¼ 10:079368,

l¼ 632:8 nm and h¼4. All the new numbers provided are given to double precision, to allow direct comparison.

Source Q sca Qext o N

Ref. [35] 3.212906 3.367213 0.954174

Standard DP 3.21290557751034 3.36721182146481 0.954173882685129 21

New DP 3.21290554203156 3.36721292620922 0.954173559094947 31

AP 3.21290554203154 3.36721292620919 0.954173559094946 22
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mrdivide function in Matlab,2 also denoted /. Using this
notation, T is computed from the following steps (similar
to those in Ref. [31]):

F1 ¼ I=Q 11,

G1 ¼ P11F1, G3 ¼ P21F1, G5 ¼Q 21F1,

F2 ¼ I=½Q 22
�G5Q 12

�,

G2 ¼ P22F2, G4 ¼ P12F2, G6 ¼Q 12F2,

T12
¼ G1G6�G4,

T22
¼ G3G6�G2,

T11
¼�G1�T12G5,

T21
¼�G3�T22G5: ð70Þ

For further efficiency, these steps are performed sepa-
rately for Teo and Toe.

It appears that this algorithm does not introduce major
loss of precision in all the cases we have investigated even
if the matrices to be inverted are badly conditioned
(condition numbers of the order of 1090 in the example
of a high aspect ratio silver spheroid studied here).

This is illustrated in Figs. 7 and 8 where the T-matrix
computed in double precision using the method presented
here and the inversion of Eq. (70) is compared to arbitrary
precision result. The T-matrix can be obtained with a
remarkable relative accuracy of at least 10�9 up to a large
N in both cases. We note that if direct inversion is used
instead of block inversion, the relative error in the obtained
T-matrix for m¼1 can be as bad as 30 orders of magnitude,
demonstrating the severe ill-conditioning of the linear
system and the efficiency of the proposed inversion method
in circumventing the numerical problems.

5. Discussion and conclusion

In conclusion, our proposed new implementation is
capable of calculating in double precision reliable scatter-
ing information in challenging cases where traditional
double precision code fails. One of these difficult cases is
that of high aspect ratio metallic nanoparticles in the
visible/infrared regime. In such cases, the small size
parameter means that the integral cancellations are
particularly spectacular even at relatively small n, as
shown in Ref. [20]. Traditional codes then typically fail
2 Note that we have noticed that in some implementations of

Matlab, mrdivide(A,B) seems to result in unwanted loss of precision.

When this is the case, it can be replaced by the equivalent expression

transpose(mldivide(transpose(B),transpose(A))), which for

some reason does not suffer from the same problem.
for N as small as N� 10. This may be sufficient for low-
precision prediction of far-field properties. But if higher
precision is required, or if near-field information is
desired, as often the case for plasmonics applications,
then larger N are necessary. As shown in Fig. 8, our new
code can handle such cases up to very large N. This is
further illustrated in Fig. 9 where we compare the
performance of our new code with earlier codes in terms
of the convergence (as a function of N) of the computed
extinction coefficient at resonance for a silver nanorod.
The standard code starts failing around N� 10�12 and
never approaches the correct result. In contrast, the new
code starts converging around N¼12 and reaches a
remarkable maximum relative accuracy of 10�12 for
N¼30. Converged values of the scattering and extinction
coefficients for this nanorod are given in Table 1.

Another type of challenging calculation is that of large
size parameter dielectric particles, which normally
require quadruple-precision codes. In this case, while
the effect of cancellations on a given element of Q is not
as extreme as for small particles, the number of multipole
orders required to calculate the scattering properties of a
large particle is larger. As shown in Fig. 4, using our
implementation the accuracy of the calculated terms
actually increases as more terms are calculated, for large
x. We can compute the optical properties of a spheroid
with xmax ¼ 35, and see that our new code produces
results correct to 10�4 (compared to arbitrary precision
results). We also provide converged values of the scatter-
ing and extinction coefficients for this particle in Table 1.

Finally we have also compared the scattering para-
meters calculated with our new code to results obtained
previously in benchmark calculations [35]. The emphasis
for benchmarking is not on challenging cases as we have
considered so far, but on obtaining reliable and high-
precision results for standard cases. As highlighted in Ref.
[35], this can be difficult and time-consuming. In the
special case of spheroids, our new implementation pro-
vides an easy and fast way of calculating such benchmark
results. To illustrate this, we also provide results in
Table 2 from standard DP code, and AP code (where the
calculation of T, including inversion, is performed in AP).
It is clear that our new code produces results in agree-
ment with the previous results, as do the other two codes.
We note that the new DP code agrees to much higher
precision with the AP results than the standard DP code.
Because the new DP code is numerically stable, it is also
easier to assess the convergence compared to standard DP
codes, which may initially converge at intermediate N, but
eventually diverge at sufficiently high N.
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Hence, this method is well-suited to calculations of the
optical properties of spheroids in cases ranging from
plasmonic nanoparticles (including high aspect-ratio
ones) up to large dielectric particles, using code that
operates entirely in double precision. This opens up the
possibility of routine calculations of the optical properties
of spheroidal particles over a large parameter space with a
high accuracy.
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Appendix A. Series expansions for Riccati–Bessel
functions

The radial functions used in the integrals are the
Riccati–Bessel functions. These are

cnðxÞ ¼ xjnðxÞ, wnðxÞ ¼ xynðxÞ, ðA:1Þ

xnðxÞ ¼ xhð1Þn ðxÞ ¼cnðxÞþ iwnðxÞ, ðA:2Þ

where jn(x) is the regular spherical Bessel function, yn(x) is
the irregular spherical Bessel function, and hð1Þn ðxÞ is the
spherical Hankel function of the first kind. The series
expansions for these are [36]

wnðxÞ ¼
�1

xn

X1
i ¼ 0

ð� 1
2 Þ

i

i!
ai,nx2i, ðA:3Þ

ckðsxÞ ¼ ðsxÞkþ1
X1
i ¼ 0

ð� 1
2 Þ

i

i!
bi,kx2is2i, ðA:4Þ

where

ai,n ¼ ð2n�1Þ!!
Y2i�1

j¼ 1

odd

1

j�2n

¼

ð�1Þið2n�2i�1Þ!! for irn,

ð�1Þn

ð2i�1�2nÞ!!
for i4n,

8><
>: ðA:5Þ

bi,k ¼
1

ð2kþ1Þ!!

Y2i�1

j¼ 1

odd

1

2kþ jþ2

¼
1

ð2kþ2iþ1Þ!!
, ðA:6Þ

and ‘!!¼ 1� 3� 5� � � � � ‘ is the double factorial
function.

Appendix B. Calculating F þnkðxÞ using series expansions

We explain here in detail how F þnk ¼ ðxwnðxÞckðsxÞÞþ

can be computed in practice using a series expansion
where there are cancellations, i.e. for nþk even and
nZkþ4. In our proposed implementation, we will typi-
cally compute these series for a given fixed n
(corresponding to the last row), for all k such as nþk

even and nZkþ4, and for a number of x (for the
integration).
The proposed solution is therefore optimised with this
in mind.

From the series expansion of the radial functions given
in Appendix A, we deduce that

Fþnk ¼�skþ1
X1

q ¼ qmin

gqnk

ð�1Þq

2qq!
x2qþk�nþ2, ðB:1Þ

where

qmin ¼
n�k

2
�1 ðB:2Þ

and

gqnk ¼
Xq

i ¼ 0

ciqnk, ðB:3Þ

where

ciqnk ¼
q

i

� �
ai,nbq�i,ks2ðq�iÞ, ðB:4Þ

ai,n and bj,k have been defined earlier in Appendix A.
As shown in Fig. 1, some loss of precision occurs when

s is close to 1 when using Eq. (B.3). These cancellations
can be traced back to the fact that when irqrn�k�1,
ai,nbq�i,k can be written as ð�1Þi times a polynomial of
variable i and of degree n�k�q�1.

In fact for a general polynomial P of degree less than q,
there is a general identity:

Xq

i ¼ 0

ð�1Þi
q

i

� �
PðiÞ ¼ 0: ðB:5Þ

From this we deduce that when s¼1

gqnkðs¼ 1Þ ¼ 0, if
n�k

2
rqrn�k�1: ðB:6Þ

To avoid these severe cancellations, which in fact
remain to some degree when s is not exactly 1, we have
developed an alternative method to compute gqnk when
qrn�k�1.

B.1. Method for qminrqrn�k�1

To isolate the singular behaviour at s¼1, we will
replace s2ðq�iÞ in Eq. (B.4) by

s2ðq�iÞ ¼ ðs2�1þ1Þq�i
¼
Xq�i

j ¼ 0

q�i

j

 !
ðs2�1Þj ðB:7Þ

meaning that

gqnk ¼
Xq

i ¼ 0

q

i

� �
ai,nbq�i,k

Xq�i

j ¼ 0

q�i

j

 !
ðs2�1Þj:

This double-sum may be re-arranged usingPq
i ¼ 0

Pq�i
j ¼ 0 ¼

Pq
j ¼ 0

Pq�j
i ¼ 0. Substituting the expressions

for ai,n (noting that irn here) and bq�i,k, and combining
the binomial coefficients, we arrive at

gqnk ¼
Xq

j ¼ 0

q

j

 !
ðs2�1Þjwq�j, ðB:8Þ
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where

wr ¼
Xr

i ¼ 0

ð�1Þi
r

i

� �
ð2n�2i�1Þ!!

ð2kþ2q�2iþ1Þ!!
: ðB:9Þ

As noted earlier ð2n�2i�1Þ!!=ð2kþ2q�2iþ1Þ!! is polyno-
mial in i of degree n�k�q�1, and therefore wr¼0 if
n�k�q�1or, such that the sum only needs to be carried
out from j¼maxð0,2ðq�qminÞ�1Þ. To calculate wr in other
cases, we introduce (the n-dependence is implicit)

urb ¼ 2b d

dX

� �b

Xn�1=2 1�
1

X

� �r� �����
X ¼ 1

¼ 2b d

dX

� �b Xr

i ¼ 0

ð�1Þi
r

i

� �
Xn�1=2�i

" #�����
X ¼ 1

: ðB:10Þ

By carrying successive differentiations, one can notice
that for 0rbrn�r�1:

urb ¼
Xr

i ¼ 0

ð�1Þi
r

i

� �
ð2n�2i�1Þ!!

ð2n�2i�2b�1Þ!!
ðB:11Þ

from which we deduce that

wr ¼ ur,n�k�q�1 ðB:12Þ

and

gqnk ¼
Xq

j ¼ maxð0,2ðq�qminÞ�1Þ

bjquq�j,n�k�q�1, ðB:13Þ

where

bjq ¼
q

j

 !
ðs2�1Þj: ðB:14Þ

In practice, we use this expression for ðn�kÞ=2�1r
qrn�k�1 and therefore need to calculate urb for
0rbrðn�kÞ=2 and 0rrrb; and bjq for 0r lrq.

The latter can easily be computed for a given q through
the recursion

b0,q ¼ 1,

bj,q

bj�1,q

¼
q�jþ1

j
ðs2�1Þ: ðB:15Þ

Note that some bjq are reused in the computations at
different k, and it is not necessary to compute them
multiple times (they do not depend on k).

Using the definition of urb, one can find the following
relations:

u0,0 ¼ 1, ur,0 ¼ 0 for r40

ur,bþ1 ¼ ðn�
1
2 �2rÞurb�ðn�

1
2�rÞurþ1,bþrur�1,b, ðB:16Þ

from which urb can be computed by recursion on b. Note
that we can easily deduce from this recursion that urb ¼ 0
if r4b, as obtained before by different means. Since urb

does not depend on k, for a given n, it can be calculated
once for all 0rbrn=2 and rrb, and then used as
necessary for all k.

In summary, all the gqnk for all 0rkrn�4 and
ðn�kÞ=2�1rqrn�k�1 can be computed efficiently and
without loss of precision using Eqs. (B.13), (B.15), and
(B.16).
B.2. Method for qZn�k

In the case where qZn�k, there does not seem to be
any serious numerical problems when computing gqnk

using Eq. (B.3). One should nevertheless make sure that
the numerical implementation is efficient in time (i.e.
minimising operations) and in precision (i.e. for example
avoiding to compute factorials of large numbers, which
can be problematic in double precision). We briefly
present here our chosen implementation. The goal here
is to compute gqnk from Eq. (B.3) for a fixed n, for
0rkrn�4, and for qZqint ¼ n�k.

We therefore need to calculate ciqnk for 0r irq. For
this, we use (indices n, k are implicit here)

ci,q

ciþ1,q
¼

s2ðiþ1Þð2iþ1�2nÞ

ðq�iÞð2kþ2q�2iþ1Þ
: ðB:17Þ

Assuming we have the initial values cq,q,n,k, we can then
calculate all ciqnk for 0r irq by downward recursion on i.

To obtain cq,q,n,k, we use an upward recursion on q:

cqþ1,qþ1

cq,q
¼

1

2qþ1�2n
: ðB:18Þ

For this we only need the initial value of cq,q for
q¼ qint ¼ n�k (which is even), which is simply

cn�k,n�k,n,k ¼ an�k,nb0,k ¼
1

2kþ1
: ðB:19Þ

B.3. Computation of the series

Using the results of the previous sections, we can
compute gqnk for all cases of interest. To calculate the
sum in Eq. (B.1), we write it as

FþnkðxÞ ¼ �skþ1
X1

q ¼ qmin

gqnkaqnkðxÞ, ðB:20Þ

where

aqnkðxÞ ¼
ð�1Þq

2qq!
x2qþk�nþ2: ðB:21Þ

For efficiency, aqnkðxÞ is computed as

aq,n,kðxÞ

aq�1,n,k
¼
�x2

2q
ðB:22Þ

and the initial conditions ank ¼ aqmin ,n,kðxÞ are obtained by
recursion on k:

an,k ¼ n�2ðxÞ ¼ 1, ðB:23Þ

an,kðxÞ

an,kþ2ðxÞ
¼
�1

n�k�2
: ðB:24Þ

In practice, the series are computed for a given n, by
looping on k, starting at k¼ n�4 and decrementing by
steps of 2. For each k, the partial series are initialised at
SkðxÞ ¼ 0 for each x. We then loop on q, starting at qmin and
compute gqnk using first the method of Appendix B.1 and
then for qZqint, that of Appendix B.2. At each step, we
add aqnkðxÞgqnk to the partial series. If Sk(x) does
not change (within double precision) upon addition of
three consecutive terms, the series is assumed to have
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converged, and we simply deduce FþnkðxÞ ¼ �skþ1SkðxÞ.
Note that even if the series has converged before q

reaches qint, we will still restart the loop at qint (with
the second method) until convergence is ensured there.
This is because for s close to 1, the added terms for
qminoqoqint can be very small, therefore mimicking
convergence, even when the terms with qZqint do con-
tribute to the final result (see also Appendix C for further
details).

Appendix C. Additional comments on F þnk when s¼1

This final appendix is not necessary for our proposed
implementation but may be useful in understanding the
analytic cancellations in the series for s¼1. It is with this
in mind that it is included here.

We here consider further the special case of s¼1, for
which

Fþnkðs¼ 1,xÞ ¼Pþ ðxwnðxÞckðxÞÞ: ðC:1Þ

We assume nþk even and nZkþ4, as these are the only
cases where we need it. All functions depend on x and for
conciseness this variable is implicit in the following.

We first define

Dnk ¼cnwk�wnck: ðC:2Þ

We will show that the series expansion of Dnk only
contains negative odd powers of x, such that ðxDnkÞ

þ is
only one term, for which we will find an analytic
expression. In fact, Waterman wrote a similar series
expansion in Ref. [21] (Eq. (28a)). We will here focus on
the dominant term of the series to obtain a simpler
expression.

Let us first note that

Dnn ¼ 0,

Dnþ1,n ¼cnþ1wn�wnþ1cn ¼ 1: ðC:3Þ

The latter is Eq. (10.1.31) in Ref. [36] and a consequence of
the Wronskian relation. These lead us to define

vpn ¼ xDpþn,n ðC:4Þ

and look for a recursion relation on p for vpn at a fixed n.
The initial conditions are simply

v0,n ¼ xDnn ¼ 0,

v1,n ¼ xDnþ1,n ¼ x: ðC:5Þ

Moreover we have, using relations on Bessel functions,

cnþ1wkþcn�1wk ¼
2nþ1

x
cnwk, ðC:6Þ

wnþ1ckþwn�1ck ¼
2nþ1

x
wnck ðC:7Þ

from which we deduce

Dnþ1,kþDn�1,k ¼
2nþ1

x
Dnk ðC:8Þ

or in terms of vpn:

vpþ1,n ¼
2nþ2pþ1

x
vp,n�vp�1,n: ðC:9Þ
It is relatively straightforward to show by recursion
using this relation and the initial conditions that

vþ2q�1,n ¼ ð�1Þqþ1x,

vþ2q,n ¼ ð�1Þqþ1qð2nþ2qþ1Þ: ðC:10Þ

For nþk even, we may therefore write

ðxDnkÞ
þ
¼ vþn�k,k ¼

ð�1Þðn�k�1Þ=2

x

n�k

2
ðnþkþ1Þ: ðC:11Þ

In addition, for nZkþ4, we have ðxwkcnÞ
þ
¼ xwkcn

(i.e. there is no negative powers of x in the series).
We therefore deduce

Fþnkðs¼ 1,xÞ ¼ xwkðxÞcnðxÞþð�1Þðn�kÞ=2
ðnþkþ1Þ

n�k

2
:

ðC:12Þ

Since the series expansion for xwkðxÞcnðxÞ starts with
terms of order xnþ1�k, there is a potential large gap in the
series expansion of Fþnkðs¼ 1,xÞ between the zeroth order
and the next non-zero order xnþ1�k. This corresponds to
all the gqnk that are zero for s¼1 and subject to loss of
precision for s close to 1. The method presented in
Appendix B.1 was developed specifically to circumvent
these problems.
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