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Simple accurate approximations for the optical
properties of metallic nanospheres and nanoshells†

Dmitri Schebarchov, Baptiste Auguié and Eric C. Le Ru*

This work aims to provide simple and accurate closed-form approximations to predict the scattering

and absorption spectra of metallic nanospheres and nanoshells supporting localised surface plasmon

resonances. Particular attention is given to the validity and accuracy of these expressions in the range of

nanoparticle sizes relevant to plasmonics, typically limited to around 100 nm in diameter. Using recent

results on the rigorous radiative correction of electrostatic solutions, we propose a new set of long-

wavelength polarizability approximations for both nanospheres and nanoshells. The improvement

offered by these expressions is demonstrated with direct comparisons to other approximations

previously obtained in the literature, and their absolute accuracy is tested against the exact Mie theory.

1 Introduction

Small particles of noble metals in the size range of about 5 nm
to 100 nm present unique optical characteristics, owing to the
excitation of localised surface plasmon resonances (LSPRs).
This resonant coupling between light and the free conduction
electrons1,2 is strongly dependent on the material properties—
the plasma frequency of the metal3,4 in particular—but also on
the size and geometry of the nanoparticle, as well as the
refractive index of the embedding medium.5,6

The excitation of LSPRs is readily observed in the far-field as
a magnified interaction with the incident light, where both
scattering and absorption cross-sections are greatly enhanced
at resonance. Naturally, LSPRs also intensify the local electric
field in close proximity to the metal surface. It is the combi-
nation of these two crucial features—amplification of the
electromagnetic field and focussing of far-field radiation to
subwavelength near-field regions—that justifies their use as
‘‘nanoantennas’’7,8 with a wide range of practical applications.
The excitation of LSPRs is indeed crucial to the field of surface-
enhanced Raman spectroscopy (SERS) and surface-enhanced
fluorescence.4,9,10 LSPRs can also be exploited for refractive-
index sensing and bio-sensing (both relying on the large

sensitivity of the LSPRs to changes in the surrounding medium),11,12

and also for applications such as photo-thermal therapy13,14 or
imaging.15

The optical properties of the bulk metal, characterised by its
dielectric function, partly determine: (i) the range of wave-
lengths over which LSPRs can be excited: it is always below
the plasma frequency; and (ii) the strength or the quality factor
of the resonance, related to the optical absorption at the
resonance wavelength.16 The majority of studies have focused
on silver and gold as plasmonic materials, which exhibit the
best optical properties in the visible/NIR range for this purpose.
For example, silver nanoparticles can sustain intense LSPRs
across the visible range. Gold is less suitable for applications in
the blue/green part of the spectrum because of strong inter-
band absorption, but offers performances comparable to silver
in the red/NIR. Gold is in fact often preferred to silver in
this range because of its greater chemical stability and bio-
compatibility. For a given metal, the key properties of the LSPR
such as resonance wavelength and maximum field enhance-
ment can be further tuned by changing the nanoparticle shape
and size. Increasing the size results in a redshift of the
resonance, also accompanied by a detrimental broadening
and damping of the resonance.17,18 Varying the particle shape
allows for a much greater tunability of the resonance,19 and
methods for synthesis of metallic nanoparticles with a wide
variety of shapes have been developed.20–22

An alternative approach to tuning the resonance is the use of
composite particles, the simplest and most successful of which
are dielectric–core/metal–shell structures, also called nano-
shells. By altering the ratio of core-to-shell radii, the LSPR
can be tuned over a large range,23–25 while retaining the simple
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spherical geometry, which facilitates both fabrication of uniform
monodisperse solutions and interpretations of the results.
Nanoshells have been used in various contexts, including
SERS,26 refractive index sensing,27 and photothermal therapy.13

For applications and further developments, it is important
to be able to theoretically understand and predict the optical
properties of metallic nanoparticles, and much effort has been
dedicated to this problem. For non-spherical particles, it is
necessary to turn to numerical methods, such as finite-
difference-time-domain (FDTD) simulations,29 finite element
modelling (FEM),30 discrete-dipole approximation (DDA),31,32

semi-analytic approaches like the T-matrix method,18,33,34 or
empirical approximations.35 Nanospheres and nanoshells
enjoy the advantage that they can be readily modelled in the
exact framework of Mie theory.2,36 Thanks to existing imple-
mentations (such as the SPlaC4,28 used here), it is possible to
predict with minimum time and effort all properties of such
structures, including the details of the local field distribution,
as shown in the example of Fig. 1. However, such implementa-
tions, although accurate and efficient, remain numerical in
essence. Closed-form expressions, even approximate, are still
important for developing a physical intuition about the system
and for rapid and easy analysis of experimental data. In the
case of nanoparticles, the small dimensions (of order a)

compared to the wavelength (l) present a natural route to such
an approximation. Indeed the electrostatics or quasi-static
approximation1,2,36 provides a simple analytical expression for
spheres (and nanoshells) that is valid in the limit of zero-size
(a/l - 0)37 and useful for qualitative understanding.

Attempts have been made to improve this approximation by
expanding the solution of Mie theory to higher orders in the size
parameter (a/l), both for nanospheres38,39 and nanoshells.40,41

We however believe that none of these previous works have
succeeded in providing expressions that are both relatively
simple and accurate in the range of interest (i.e. for diameters
up to E100 nm). Moreover, although several approximate
expressions have been proposed, to the best of our knowledge
a comparative analysis of their respective merits has not been
carried out. We here argue that the choice of which expression is
the most appropriate to use should be guided by:
� The accuracy of these expressions (or equivalently, their

range of validity).
� The simplicity of the expressions; indeed there is no

interest in finding an approximation that is as complicated to
compute and manipulate as the original one.
� The compatibility with physical constraints. For example,

we can compute within Mie theory the extinction and scattering
coefficients Qext and Qsca, from which the absorption coefficient
is derived as Qabs = Qext � Qsca. The latter must be zero for non-
absorbing spheres and positive otherwise. If Qabs is small, an
approximation may accurately predict Qext and Qsca, but predict
a non-physical negative Qabs, and such a situation is clearly not
desirable as it violates energy conservation.

In fact, most of the expressions so far proposed in the
literature for nanospheres and nanoshells fail one or more of
these three criteria.

In this article, we compare the accuracy of a number of
possible small-size expansions of the Mie coefficients to predict
far-field optical properties (extinction, scattering, and absorp-
tion) of metallic nanospheres. We in particular highlight how
various forms of these expansions can be written, which,
although equivalent to a given order, vary significantly in their
accuracy for predicting LSPR properties. We also use recent
developments in the understanding of the radiative correc-
tion39,42 to propose simple and accurate new expressions for
nanospheres, and study their range of validity. These results are
then extended to the case of nanoshells. These expressions
should prove very useful for a quick comparison with experi-
mental results and may provide further physical insight into
the behaviour of LSPR in nanospheres and nanoshells.

2 Metallic nanospheres
2.1 Brief review of Mie theory

Without going into the full details of Mie theory (see e.g. Ch. 4
in ref. 2 or App. H in ref. 4), we first define for completeness the
main notations and recall the expressions most relevant to
this work.

We consider first a homogeneous, non-magnetic and iso-
tropic sphere of radius a with relative dielectric function es

Fig. 1 Far-field scattering (red) and absorption (blue) spectra of a 40 nm radius
gold nanosphere immersed in water (dashed lines), and a 40 nm gold nanoshell
(solid lines) with a glass core (refractive index = 1.5, core-to-shell ratio f = 0.9).
Scattering and absorption cross-sections are normalised by the geometrical cross-
section. For both types of particles a strong peak in scattering and absorption is
observed in the visible-NIR region of the spectrum, associated with the excitation
of a dipolar plasmon resonance; the nanoshell has a resonance frequency red-
shifted with respect to the homogeneous sphere, and its quality factor is
enhanced. A small contribution from a quadrupolar resonance appears at around
700 nm for the nanoshell. The colormap displayed as an inset presents the SERS
enhancement factor |E/Einc|4 in the vicinity of the nanoshell at resonance
(l = 875 nm). These graphs were produced with the freely available SERS and
plasmonics codes for Matlab.4,28
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(possibly complex and wavelength dependent) in a non-absorbing
embedding medium of relative dielectric constant em (which is
real and positive and em = nm

2, where nm is the refractive index)
and define the relative refractive index as:

s ¼
ffiffiffiffi
es
pffiffiffiffiffi
em
p : (1)

For time-harmonic excitation at wavelength l, the wave-vector
in the medium is k ¼ 2p

ffiffiffiffiffi
em
p

=l and we define the dimension-
less size parameter x,

x ¼ ka ¼ 2p
ffiffiffiffiffi
em
p a

l
: (2)

In this work, we will only consider silver and gold spheres, and
use for es(o) the corresponding bulk dielectric functions, given by
analytical fits to experimental data as given in ref. 4, 43 and 44.
Note that any small-size effects2 on es are neglected for simplicity.
It would however be straightforward to include, for example,
electron surface scattering effects45,46 within our formalism.

The optical response of the sphere is then entirely defined
by the Mie susceptibilities Gn and Dn (note that n = 1,2,. . .

defines the multipole order), which will be conveniently
expressed here as:

Gn = �Cc
n /Cx

n, Dn = �Dc
n /Dx

n, (3)

where

Cc
n ¼ scnðxÞc0nðsxÞ � c0nðxÞcnðsxÞ; (4)

Cx
n ¼ sxnðxÞc0nðsxÞ � x0nðxÞcnðsxÞ; (5)

Dc
n ¼ cnðxÞc0nðsxÞ � sc0nðxÞcnðsxÞ; (6)

Dx
n ¼ xnðxÞc0nðsxÞ � sx0nðxÞcnðsxÞ: (7)

The functions cn(x), wn(x), and xn(x) are the Riccati–Bessel
functions2 defined in terms of the spherical Bessel and Hankel
functions as:

cn(x) = xjn(x), wn(x) = xyn(x), (8)

xn(x) = xh(1)
n (x) = cn(x) + iwn(x). (9)

In the standard case of plane wave excitation, the extinction,
scattering, and absorption coefficients (i.e. cross-sections
normalised to the geometrical cross-section) are obtained as:

Qext ¼ �
2

x2

X
n

2nþ 1ð Þ Re Gnð Þ þRe Dnð Þ½ �; (10)

Qsca ¼
2

x2

X
n

2nþ 1ð Þ jGnj2 þ jDnj2
h i

; (11)

Qabs ¼ Qext �Qsca ¼ �
2

x2

X
n

2nþ 1ð Þ

� jGnj2Re 1þ Gn
�1� �
þ jDnj2Re 1þ Dn

�1� �h i
:

(12)

The latter equation is a consequence of energy conservation,2

expressed as Qext = Qsca + Qabs. For physical solutions, we must

have Qabs Z 0 for any type of incident excitation, which is
equivalent to:47

1 + Re(Dn
�1) r 0 (13)

(and an identical relation for Gn) with the equality for non-
absorbing spheres (for which s is real).

2.2 Small sphere expansions and radiative corrections

There have been many attempts to find suitable small-
argument expansions of these susceptibilities, notably in the
context of plasmonics for the study of localised surface
plasmon resonances (LSPR) in metallic nanospheres, where
|s| may be relatively large. As x - 0, one can show that the
susceptibilities scale as

Gn p x2n+3, Dn p x2n+1. (14)

The dominant contribution is therefore governed by D1 (electric
dipole) of order x3, the lowest term of which corresponding to
the quasi-static approximation.2 The next lowest order includes
contribution from D2 (electric quadrupole) and G1 (magnetic
dipole), both of order x5. All other terms are of order at least x7.
The far field properties may therefore be approximated as:

Qext ¼ �
2

x2
Reð3D1 þ 3G1 þ 5D2 þOðx7ÞÞ (15)

Qsca ¼
2

x2
3jD1j2 þ 3jG1j2 þ 5jD2j2 þOðx7Þ
h i

: (16)

When carrying out approximations of the susceptibilities, it is
important for physical reasons to retain the validity of the
energy conservation condition given above (eqn (13)). In order
to enforce this condition, we first write (a similar argument is
valid for Gn):

1þ 1

Dn
¼ i

Dw
n

; (17)

where we have defined

Dw
n ¼ �

Dc
n

Dw
n
; (18)

similar to Dn, except for the substitution of x by w, i.e.
Dw

n ¼ wnðxÞc0nðsxÞ � sw0nðxÞcnðsxÞ. The energy conservation
condition (eqn (13)) is then expressed conveniently as:

Im(Dw
n) r 0 (= 0 for s real). (19)

In the special case of a non-absorbing scatterer (s real) w(sx) is
also real, and the latter condition, which reduces to Dw

n real, is
therefore trivially satisfied by inspection of eqn (18). It is not so
obvious to show that the equivalent expression on D1 (eqn (13))
is also satisfied. We have therefore argued recently42 that this
alternative condition is much easier to check in approximate
treatments, and it provides a simple procedure for finding
approximations of the susceptibility that satisfy energy conser-
vation, namely: first find an approximation of Dw

n E ~Dw
n that
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satisfies eqn (19) (at least in the desired range of validity), and
then deduce the approximate DRC

n from eqn (17), or explicitly:

DRC
n ¼ �1þ i

~Dw
n

 !�1
: (20)

We will demonstrate in the following sections that this opera-
tion improves the accuracy of approximate polarizability
expressions. This procedure is in fact a generalisation of the
commonly used radiative correction, previously introduced for
a dipole,39 and is a special case of a recently proposed general
formalism for radiative corrections applicable to arbitrary
scatterers.42

2.3 Electric dipole contribution

For metallic nanospheres, the optical response is largely domi-
nated by a main dipolar LSPR, described by D1 and it is
therefore interesting to consider its approximation indepen-
dently of the other terms. Its resonant character is evident in
the wavelength-dependence of the far-field properties, given by:

Qext � �
6

x2
Re D1ð Þ (21)

Qsca �
6

x2
D1j j2 (22)

The full expression for D1 in terms of trigonometric functions is
given in Section SII† for reference. The lowest order approxi-
mation to D1 is

Dð0Þ1 ¼
2i

3

s2 � 1

s2 þ 2
x3; (23)

which is simply equivalent to the electrostatics approximation
(recall that s2 = es/em).

However, as highlighted in ref. 42, this approximation is
only valid up to very small sizes of E5 nm for metallic spheres,
and in fact violates the optical theorem (it predicts a negative
absorption) as x increases.47 Moreover, since the electrostatics
approximation is size-independent (apart from a trivial scaling
factor), it does not predict the redshift and broadening of the
LSPR as the size increases, which originates from radiation
damping and a gradual dephasing of the field across the
particle.48 The radiative correction to this dipolar polarizability
can be obtained from the earlier considerations by noticing
that the lowest order approximation to Dw

1 is simply ~Dw
1 E iD(0)

1 ,
since D(0)

1 is of lowest order x3 in eqn (17). Substituting this into
eqn (20), we obtain the radiative correction to D1 at lowest
order as

(D(0)�RC
1 )�1 = (D(0)

1 )�1 � 1, (24)

which can be written in the more familiar form

Dð0Þ�RC
1 ¼ Dð0Þ1

1� Dð0Þ1

: (25)

This formula is equivalent to the one proposed by Wokaun and
coworkers;39 the radiative correction of the lowest order polar-
izability presents a characteristic term D(0)

1 of relative order x3 in

the denominator. However, as pointed out in ref. 42, the
improvement is marginal and not quantitative. It corrects the
problem of negative absorption as expected, but does not
predict the observable size-induced redshift of the LSPR.

Higher order expansions, up to third relative order, have
therefore been proposed, notably:35

DA
1 ¼ Dð0Þ1

1� x2

10
ðs2 þ 1Þ þOðx4Þ

1� x2

10

s2 � 1

s2 þ 2
ðs2 þ 10Þ � Dð0Þ1 þOðx4Þ

: (26)

In this expression, the Taylor expansions of the numerator and
the denominator are each exact to order 3. However, other
equally valid expansions to the same order could be obtained,
for example:4

DB
1 ¼ Dð0Þ1

1

1� 3x2

5

s2 � 2

s2 þ 2
� Dð0Þ1 þOðx4Þ

; (27)

which corresponds to a Taylor expansion of D�1
1 , or

DC
1 ¼ Dð0Þ1 1þ 3x2

5

s2 � 2

s2 þ 2
þ Dð0Þ1 þOðx4Þ

� �
; (28)

which corresponds to a direct Taylor expansion of D1. Another
alternative, which amounts to a partial re-arrangement of DA

1

has also been proposed:38,48

DD
1 ¼ Dð0Þ1

1� x2

10
þOðx4Þ

1� x2

10

7s2 � 10

s2 þ 2
� Dð0Þ1 þOðx4Þ

(29)

It is interesting to note that all these expressions are equivalent
to third relative order, i.e. they only differ in terms of fourth
relative order or higher (see also the general discussion of
Taylor expansions in Section SI†). Which one of these expan-
sions, if any, best describes the LSPR and is the most physical,
is an important question, which has not been investigated. In
terms of predicting the far-field properties of metallic nano-
spheres, case C fails badly even for the smallest sizes (not
shown here). As shown in Fig. 2, cases A and B seem to have a
larger range of validity, up to a E 20–30 nm, but then fail to
predict the correct redshift for B or the correct magnitude for A.
Case D (not shown here) is similar to case B (although margin-
ally worse). In fact, even if expressions A, B, and D contain a
term in the denominator of order x3 corresponding to the
radiative correction of the lowest order term, closer inspection
reveals that cases A and D do not strictly satisfy eqn (13). This is
also evident in the negative absorption predicted at larger
sphere sizes (see Fig. 2).

Interestingly, case B, which corresponds to a Taylor expan-
sion of (Dw

1)�1 to order 5 (second relative order) followed by the
radiative correction as given by eqn (20), does satisfy exactly
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eqn (13) for all s and x. To see this, one may notice that we have
in this case

~Dw
1 ¼ �

2

3
x3

s2 � 1

s2 þ 2� 3

5
x2ðs2 � 2Þ

: (30)

For s real, it is obvious that ~Dw
1 is real. It is also possible to show

that Im( ~Dw
1) r 0 provided that Im(s2) Z 0 (which is the case for

materials with no gain). Eqn (19) is therefore satisfied by the
approximated ~Dw

1, which automatically implies eqn (13) for DB
1 =

�i ~Dw
1/(1 + i ~Dw

1) derived from eqn (20). Case B is therefore
arguably the most physical approximate expression of the
susceptibility that has been proposed when restricting oneself
to third relative order expansions.

Ideally, an approximation valid up to at least a E 50 nm
would be desirable to cover the majority of relevant experi-
mental cases in plasmonics. We therefore seek to extend the
approximation obtained for DB

1 to fourth relative order. Writing
first (Dw

1)�1 as:

1

Dw
1

¼ 1

iDð0Þ1

1� 3x2

5

s2 � 2

s2 þ 2
� 3x4

350

s4 � 24s2 þ 16

s2 þ 2
þOðx6Þ

� �
; (31)

and applying the radiative correction formula (eqn (20)), we get:

DE�RC
1 ¼ Dð0Þ1

1� 3x2

5

s2 � 2

s2 þ 2
� Dð0Þ1 �

3x4

350

s4 � 24s2 þ 16

s2 þ 2

; (32)

or, substituting the value of D(0)
1 :

DE�RC
1 ¼

2

3
ix3 s2 � 1
� �

s2 þ 2� 3x2

5
s2 � 2ð Þ � 2

3
ix3 s2 � 1ð Þ � 3x4

350
s4 � 24s2 þ 16ð Þ

:

(33)

As shown in Fig. 3, this relatively simple formula predicts
almost perfectly the dipolar LSP resonance profiles of extinc-
tion, scattering and absorption of silver and gold nanospheres
up to a diameter of at least 2a = 140 nm and even semi-
quantitatively up to 2a = 200 nm. While the exact Mie coeffi-
cient for the dipolar term could also be calculated with simple
trigonometric functions (see Section SII†), the polynomial
expansion given in eqn (33) can provide a more direct assess-
ment of the different correction terms in connection to the
electrostatic result, as a function of the size parameter.

2.4 Higher order multipoles

We have so far considered only the optical response associated
with the electric dipole term D1, which is dominant for small
spheres. However, for sphere sizes increasing up to a E 50 nm,
the electric quadrupole D2 and magnetic dipole G1 terms are no
longer negligible in metal particles. Their respective lowest
order expansions have also been considered in approximate
treatment of nanospheres.17,38 These are:

Dð0Þ2 ¼
i

30

s2 � 1

s2 þ 3=2
x5; (34)

Fig. 2 Predictions of the dipolar localised surface plasmon resonance for a silver
nanosphere in water, as evidenced by the wavelength dependence of the far-
field properties: extinction, scattering, and absorption. Only the dominant electric
dipole response (corresponding to D1) was included in these calculations. We
compare the exact result (bold/black lines) with the approximate results using DA

1

from eqn (26) (red/dotted lines) and DB
1 from eqn (27) (blue/dashed lines). The

vertical scales have been adjusted in each panel to improve the visualisation; the
magnitude of the maximum Qext, Qsca, and Qabs in each case is indicated for
information.

Fig. 3 Predictions of the dipolar localised surface plasmon resonance for silver
(blue) and gold (red) nanospheres in water, as evidenced by the wavelength
dependence of the far-field properties: extinction, scattering, and absorption.
Only the dominant electric dipole response (corresponding to D1) was included in
these calculations. We compare the exact result (solid lines) with the
simple fourth order approximation proposed in this work DE�RC

1 from eqn (32)
(dashed lines).
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and

Gð0Þ1 ¼
i

45
s2 � 1
� �

x5: (35)

Note that for metallic spheres, D(0)
2 exhibits a resonance for Re(s2) =

�3/2, corresponding to the quadrupolar LSPR, but G(0)
1 has no such

feature.2 As a result, the latter is for most purposes negligible. It is
only when the LSP resonances are strongly damped (e.g. for larger
gold particles with resonances below 550 nm) that it may be worth
including it in the approximation. In such cases, one could use the
radiatively-corrected lowest order approximation:

Gð0Þ�RC
1 ¼

i

45
s2 � 1
� �

x5

1� i

45
s2 � 1ð Þx5

: (36)

As for D1, the lowest order approximation D(0)
2 fails pretty

rapidly as the size increases, even when including a radiative
correction. Following the previous procedure, we therefore
expand to next order to get

Dw
2

� ��1¼ iDð0Þ2

� ��1
� 1þ 5

14
x2

1

s2 þ 3=2
þO x4

� �� �
; (37)

and apply the radiative correction formula (eqn (20)) to obtain:

D2 �
1

30
ix5 s2 � 1
� �

s2 þ 3=2þ 5x2

14
� i

x5

30
s2 � 1ð Þ

: (38)

Note that the x5 term in the denominator is the radiative correc-
tion terms and is here necessary (even if some lower order x4 term
have been neglected) to ensure that the optical theorem is
satisfied. This approximation is accurate for gold spheres in water
up to a = 50 nm and silver spheres in water up to a = 25 nm.

Perhaps unexpectedly, it is necessary to go to an even higher
order to model accurately the quadrupolar LSP of larger silver
spheres (a > 25 nm). We then need to use:

D2 �
1

30
ix5 s2 � 1
� �

s2 þ 3=2þ 5x2

14
� 5x4

2646
s4 þ 30s2 � 45ð Þ � i

x5

30
s2 � 1ð Þ

:

(39)

In such nanospheres, the octupolar LSPR, characterised by D3

is also visible in the far-field properties. In most cases of
interest, its contribution is neglected, but we nevertheless
include its expansion here for completeness. As for the dipolar
and quadrupolar cases, an expansion to fourth relative order is
necessary to account properly for the size-induced redshift, and
we therefore have (including radiative correction):

D3 �
4

4725
ix7 s2 � 1
� �

s2 þ 4=3þ 7x2

135
s2 þ 4ð Þ � 7x4

10 692
s4 þ 8s2 � 32ð Þ � i

4x7

4725
s2 � 1ð Þ

:

(40)

The validity of these approximations is illustrated in Fig. 4 by
comparison with exact results from Mie theory for silver

nanospheres in water. We find that it is not necessary to include
the magnetic dipole term (G1) as the LSP resonances strongly
dominate the spectra. As shown in Fig. 3, the dipolar LSP
resonance is well described by D1 approximated by eqn (33),
but higher order resonances must be included to describe
accurately the overall spectrum. Adding the electric quadrupole
term (D2, approximated by eqn (39)) is sufficient up to at least a =
30 nm, but for a = 50 nm and above, one may also want to add
the octupolar term (D3, approximated by eqn (40)), in particular
to model the absorption cross-section. The approximated expres-
sions are found to be in excellent agreement up to at least a =
50 nm and in reasonable agreement up to a = 70 nm.

In the case of gold nanospheres in water (see Fig. S2†), only
the electric dipole term (D1, approximated by eqn (33)) needs to
be included, as the higher order resonances are strongly damped
by the large absorption below B550 nm. One may also include
the magnetic dipole term (G1, approximated by eqn (36)) for a
slightly better quantitative agreement. The proposed approxi-
mation of the far field properties is then extremely good up
to a = 50 nm (100 nm diameter), and even to some extent up
to a = 70 nm, where it only fails to predict the absorption
coefficient.

3 Nanoshells
3.1 General principle

We now show how these arguments can be extended to the more
complicated case of a nanoshell, i.e. a composite scatterer

Fig. 4 Predicted far-field spectra of the scattering and absorption coefficients of
silver nanospheres in water. Exact results (solid lines) are obtained from Mie
theory while the approximated results (dashed lines) are obtained from the
expressions obtained in this work. The terms included in the approximation
correspond to the electric dipole D1 (approximated by eqn (33)), electric
quadrupole D2 (eqn (39)), and electric octupole D3 (eqn (40)). The black
solid line is the converged Mie solution including multipoles of all orders, shown
for comparison.
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consisting of two concentric spheres as illustrated in Fig. 5. The
exact solution can be found again from a simple extension of Mie
theory to the case of multiple spherical interfaces.49 More elabo-
rate models have also been used to study non-local effects.50

Taylor expansions of the Mie solution have been provided by Alam
and Massoud,40 and further developed by Li et al.41 In both of
these studies, no attempts were made to find the simplest, most
accurate expansions at a given (low) order. As a result, the
approximate expressions end up being more complicated than
the original expressions they approximate. To remedy this
problem, we here use what we have learnt in the previous section
in the case of nanospheres to obtain both simple and accurate
expressions. We will in particular carry out Taylor expansions of
the inverse susceptibilities, and apply again the concept of
radiative correction.42 Moreover, in ref. 40 and 41 Taylor
expansions are carried out with respect to both sphere radii,
a1 and a2, which makes it very difficult to isolate the electro-
statics limit (a1, a2 - 0 with a1/a2 constant). In fact, expansions to
third relative order are then necessary to obtain the electrostatics
limit. We here instead consider a fixed ratio f = a1/a2, which
defines the internal structure of the nanoshell, and carry out
expansion with respect to the overall nanoshell size characterized
by a2, at a fixed f. The electrostatics limit then arises naturally as
the lowest order term. This considerably simplifies the expres-
sions obtained, and their use for further physical analysis of the
scattering problem.

The validity of the obtained expressions will be tested for
model structures of interest: silica core (refractive index of 1.5)/
metal shell (silver or gold).

3.2 Mie theory solution for nanoshells

We consider a spherical shell (see Fig. 5), characterised by two
concentric radii a1 o a2 and three dielectric constants ec (core), es

(shell) and em (embedding medium). The size-independent
internal structure is determined by the filling ratio f = a1/a2 A
(0,1). The size parameter is determined by the outer radius
and defined as x ¼ 2pa2

ffiffiffiffiffi
em
p

=l and for a fixed f corresponds to
uniform scaling of the entire particle. We also define relative
refractive indices ss ¼

ffiffiffiffi
es
p

=
ffiffiffiffiffi
em
p

and sc ¼
ffiffiffiffi
ec
p

=
ffiffiffiffiffi
em
p

. For simpli-
city, we focus here only on the electric Mie susceptibilities,
denoted by dn:4,40,41

dn nxn=d
x
n ;

nxn ¼ cnðxÞ c0n ssxð Þ þ Dn s1; x1ð Þx0n ssxð Þ
	 


�ss cn ssxð Þ þ Dn s1; x1ð Þxn ssxð Þ½ �c0nðxÞ;

dx
n ¼ ss cn ssxð Þ þ Dn s1; x1ð Þxn ssxð Þ½ �x0nðxÞ

�xnðxÞ c0n ssxð Þ þ Dn s1; x1ð Þx0n ssxð Þ
	 


;

9>>>>>>>>>=
>>>>>>>>>;

(41)

where Dn(s1,x1) is the single-sphere Mie susceptibility of the
core sphere embedded in an infinite shell, i.e. eqn (3) with x1 =
fssx, s1 = sc/ss.

One may notice that the four expressions in brackets can be
simplified as for example: [cn(ssx) + Dn(s1,x1)xn(ssx)] = i[cn(ssx) +
Dw

n(s1,x1)wn(ssx)], i.e. this amounts to replacing x by iw. Since w
has a simpler Taylor expansion than x (for example it has a well-
defined parity, but not x), it is beneficial here to use this
equivalent formulation.

Moreover, following the method we used for spheres for
radiative correction, we will also rewrite the electric suscepti-
bility of the nanoshell as:

(dn)�1= �1 + i(dwn)�1, (42)

where dwn can be expressed as:

dwn ¼ nwn=d
w
n ;

nwn ¼ cnðxÞ c0n ssxð Þ þ Dw
n s1; x1ð Þw0n ssxð Þ

	 

�ss cn ssxð Þ þ Dw

n s1; x1ð Þwn ssxð Þ
	 


c0nðxÞ;

dw
n ¼ ss cn ssxð Þ þ Dw

n s1; x1ð Þwn ssxð Þ
	 


w0nðxÞ

�wnðxÞ c0n ssxð Þ þ Dw
n s1; x1ð Þw0n ssxð Þ

	 

:

9>>>>>>>>>>=
>>>>>>>>>>;

(43)

3.3 Lowest order and electrostatics approximation

Assuming the particle is small compared to the wavelength in
the incident medium, we now seek approximate expressions to
the dipolar electric susceptibility d1 by means of Taylor expan-
sion about x = 0. The general procedure for this is detailed in
Section SIV.†

It can be shown that the lowest order approximation to d1 is

dð0Þ1 ¼
2i

3

ss
2ea � eb

ss 2ea þ 2eb

� �
x3; (44)

where

ea ¼ sc
2 1þ 2f 3
� �

þ 2ss
2 1� f 3
� �

;

eb ¼ sc
2 1� f 3
� �

þ ss
2 2þ f 3
� �

;

9=
; (45)

which is equivalent to the electrostatic expression obtained by
Averitt et al.45 (hence the nomenclature). Note that when:
(i) f = 0, ss = s; (ii) ss = sc = s; and (iii) f = 1, sc = s, we should
recover D(0)

1 given in eqn (23). To make this more explicit, we
define the ratio:

r ¼ ea
eb
; (46)

Fig. 5 The geometry of a nanoshell, defined by two concentric
spherical surfaces partitioning space into three disjointed regions. The
core (ec), the shell (es) and the outer medium (em) are each characterised
by a distinct dielectric constant. We also define reduced variables used in
the text.
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and rewrite d(0)
1 as

dð0Þ1 ¼
2i

3

rss
2 � 1

rss 2 þ 2

� �
x3: (47)

Since r = 1 if f = 0 or ss = sc, and rss
2 = sc

2 if f = 1, these three
special cases reduce naturally to D(0)

1 , as expected.
A similar method applied to the electric quadrupolar

susceptibility d2 yields:

dð0Þ2 ¼
i

30

ss
2~ea � ~eb

ss 2~ea þ
3

2
~eb

2
64

3
75x5 ¼ i

30

~rss
2 � 1

~rss 2 þ
3

2

2
64

3
75x5; (48)

where

~r ¼ ~ea=~eb;

~ea ¼ sc
2 2þ 3f 5
� �

þ 3ss
2 1� f 5
� �

;

~eb ¼ 2sc
2 1� f 5
� �

þ ss
2 3þ 2f 5
� �

:

9>>>=
>>>;

(49)

Again note that r̃ = 1 if f = 0 or ss = sc, and rss
2 = sc

2 if f = 1, so that
setting: (i) f = 0, ss = s; (ii) ss = sc = s; and (iii) f = 1, sc = s in
eqn (48) and (49) naturally yields the expression for D(0)

2

obtained earlier in eqn (34) as expected.

3.4 Higher order corrections

As for the sphere, the lowest order approximations rapidly fail
as the nanoshell size increases. There are many possible routes
to obtaining higher-order polynomial approximations to d1.
Alam and Massoud40 and Li et al.41 heroically derived analytic
expressions for d1 by Taylor expansion of the numerator and
the denominator, each up to the sixth order in both
a1 and a2. Although this procedure yields results that are close
to the exact Mie theory, it involves cumbersome polynomials
that are not really easier to deal with than the exact expressions.
By following the procedure used for spheres and expanding
only in x (at a fixed f), we can derive considerably simpler yet
accurate expressions. The derivation involves expanding first
(dw1)�1 as:

dw1
� ��1¼ idð0Þ1

� ��1
1� 3

5
a1x2 þO x4

� �� �
: (50)

The factor �3/5 is included by analogy with the sphere result
(eqn (27)). Part of the difficulty here is to write a1 in a form that
is simple enough to be usable. To this end, we chose to
reuse the expressions already defined in the electrostatics

approximation, and in particular express the results in terms
of r as before. We obtained:

a1 ¼
ss

2 � 1
� �

3r� 2ð Þss 2 � 2
	 


þ 3f 2ss
4

eb
r� 1ð Þ sc 2 � 2ss

2
� �

rss 2 � 1ð Þ rss 2 þ 2ð Þ :

(51)

Note that for r = 1 (i.e. if f = 0 or sc = ss), we directly recover the
sphere result (eqn (27)). If f = 1, then rss

2 = sc
2 and 3f2ss

4/eb = ss
2,

so the sphere result is also recovered after simple algebraic
simplifications.

After radiative correction, the Mie susceptibility therefore
has the form (correct to third relative order):

dRC
1 ¼ dð0Þ1

1� 3x2

5
a1 � dð0Þ1

; (52)

or explicitly:

As illustrated in Fig. 6, this second order approximation
predicts almost exactly the dipolar LSP resonances of silver
nanoshells up to at least a2 = 30 nm, for all values of the filling
factor f. However, as for nanospheres, the approximation loses
accuracy for nanoshells of radius a2 = 50 nm, except in the case
of thin shells (f close to 1), where it remains valid. We therefore
also provide for completeness the expression for the fourth-
order correction of the dipolar susceptibility of nanoshells,
following the same method as that used for the second order
(see Section SIV† for details). We obtained:

dRC
1 ¼ dð0Þ1

1� 3x2

5
a1 �

3

350
a2x4 � dð0Þ1

; (54)

where

a2 ¼
1

ðrss2 � 1Þðrss2 þ 2Þ

� ss
2 � 1

2

�
ð43r2 � 73rþ 32Þss4 þ ð25� 73rÞss2 þ 32
	 


þ3f
4ss

4

eb
ðr� 1Þðsc4 � 24sc

2ss
2 þ 16ss

4Þ

þ126ss
2ðss2 � 1Þðr� 1Þ
rss2 � 1

1

6
ðð4� 3rÞss2þ1Þþ f 2ss

2

eb
ðsc2�2ss

2Þ
� �2)

(55)

This expression is then very accurate (see Fig. 6) up to at
least a2 = 70 nm for all types of nanoshells (low and large f).

dRC
1 ¼

2i

3
x3 rss

2 � 1
� �

rss 2 þ 2� 3x2

5

ss
2 � 1

� �
3r� 2ð Þss 2 � 2

	 

þ 3f 2ss

4

eb
r� 1ð Þ sc 2 � 2ss

2
� �

rss 2 � 1ð Þ � 2i

3
x3 rss 2 � 1ð Þ

: (53)
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As for spheres, larger shells also exhibit a non-negligible
quadrupolar LSP resonance associated with the electric quad-
rupolar susceptibility d2. We may follow the same procedure for
this term to get (to second-relative order):

which reduces to eqn (38) for spheres if r̃ = 1 (i.e. f = 0 or
ss = sc) or if f = 1. As shown in Fig. 6, this expression accurately
predicts the quadrupolar LSP resonance up to at least
a2 = 30 nm and even up to a2 = 50 nm for thinner shells
(f Z 0.8).

Finally, we provide in Fig. S3† a figure equivalent to Fig. 6
but for gold nanoshells in water. It is clear that these expres-
sions are also valid to model the optical properties of gold
nanoshells up to at least a2 = 50 nm.

4 Conclusion

We believe the new analytic approximations proposed in this
work will be valuable for rapid, yet quantitative, comparison

with experimental results in optical studies of plasmonic
nanoparticles with spherical symmetry, i.e. spheres or shells.
They could also provide the basis for further theoretical
description of LSPRs in such structures. This detailed compar-
ison moreover highlights a number of often overlooked, yet
important features of such analytic expansions. Firstly, the fact
that various forms of these expansions can be written, which,
although equivalent to a given order, vary significantly in their
accuracy for predicting LSPR properties. Secondly, the results

Fig. 6 Far-field extinction coefficients for silver nanoshells (core refractive index 1.5) immersed in water, with varying filling ratios f = 0.2 to f = 0.9. The black solid line
is the fully converged result from Mie theory, including multipoles of all orders. For the radii a2 = 30 nm and a2 = 50 nm (first two rows), we compare the second-order
expressions (dashed lines) for d1 (eqn (53); red) and d2 (eqn (56); blue) to the corresponding term from Mie theory (solid lines). For the larger particle size a2 = 70 nm,
only the dipolar term is shown, with a comparison between the second order (eqn (53)) and fourth-order (eqn (54)) approximations (red and green dashed lines,
respectively). Note how in all cases the agreement between the exact and the approximate expressions improves as f increases.

dRC
2 ¼

i

30
x5ð~rss 2 � 1Þ

~rss 2 þ
3

2
þ 5x2

14

ss
2 � 1

� �
1� ~rð Þss 2 þ 1

	 

þ 5f 2ss

6

~eb
~r� 1ð Þ

~rss 2 � 1ð Þ � i

30
x5 ~rss 2 � 1ð Þ

; (56)
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highlight the effectiveness of the recently-introduced general
radiative correction scheme39,42 to improve the accuracy of
such expansions and maintain the physical requirement of
energy conservation.
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