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ABSTRACT

A severe loss of precision is unravelled in the numerical calculation of surface integrals
that appear in the Extended Boundary Condition Method (EBCM), to calculate the
T-matrix elements of axisymmetric particles. We systematically study the occurrence of
numerical cancellations for three basic particle shapes, namely cylinders, spheroids, and
offset spheres, with typical sizes, aspect ratios and materials often studied as bench-
mark examples in the literature. The cancellations are evidenced both for spheroids and
offset spheres, and are particularly pronounced in the latter case. The resulting loss of
precision is independent from the commonly asserted problems of matrix inversion. We
show that the origin of these severe cancellations can be further studied and under-
stood by numerical investigations of the scaling of the integrands and integrals with
respect to the particle size parameter. This allows us to develop a detailed mathema-
tical proof of these cancellations. The results suggest that the EBCM method, in its usual
formulation, suffers important numerical instabilities which reduce the domain of
convergence for specific particle shapes that are commonly used for testing and

benchmarking the method.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

From the vast array of numerical techniques available
to rigorously solve Maxwell’s equations [1], the Discrete
Dipole Approximation [2], the Finite Differences method
[3], and the T-matrix framework [4] have been used
extensively to model the optical properties of nonsphe-
rical particles (the special case of spheres is very effi-
ciently handled by Mie theory [5-7], with practically no
disadvantage). Within its realm of applicability, the T-
matrix approach is widely recognized for its elegant
formulation of the scattering problem, which facilitates
the development of semi-analytical procedures for effi-
cient orientation averaging [8], and the treatment of
multiple-scattering in ensembles of particles [9]. First
introduced by Waterman [10], the T-matrix framework
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considers the truncated series expansions of the incident,
internal, and scattered fields in a basis of vector spherical
wavefunctions (VSWFs). Such expansions read, for the
incident and scattered fields, respectively [4],

Ejne(r) = Eozaanfq1,,)1(’<1 r+ bnmN51111)1(k1 r),
mm

ESca (l‘) = EO anmMSn)l (kl l‘) + QnmN513rr)1(k1 l‘),

n,m

where k; is the wavevector in the surrounding medium, r
denotes the position vector, M) N are vector spherical
harmonics, a,m,, b,m are the known coefficients of the
incident field, and pnm, gnm are the unknown coefficients
of the scattered field. n>1 and |m|<n denote here
the total and projected angular momentum numbers.
Following the linearity of Maxwell’s equations, the coeffi-
cients of these expansions can be linked in a linear
relationship between incident and scattered field, written
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in matrix form

(a)=(0)

The transition matrix (T), so-called T-matrix, thus fully
describes the scattering properties of the particle for an
arbitrary incident beam, and formally provides an exact
solution of Maxwell’s equations. In practice, the infinite
series expansions—and consequently the T-matrix—need to
be truncated to a finite maximum order N, which (theore-
tically) dictates the final accuracy of the calculation.

Historically, the Extended Boundary Condition Method
(EBCM) was introduced conjointly with the T-matrix
framework by Waterman to calculate the matrix elements
[10]. It has in fact become customary, if somewhat
misleading, to see in the literature the generic appellation
T-matrix being used in place of the more specific acronym
EBCM. Although a variety of other techniques have been
proposed to calculate the T-matrix of a given scatterer
[11-16], the EBCM remains arguably the most efficient
and elegant approach when it is applicable, and lends
itself naturally to further analytical work.

Within the EBCM approach, the T-matrix is obtained as
a matrix product [4]

T=-RegQQ !, (1)

where the matrix Q expresses the null-field condition
relating the incident and internal fields, while RgQ
describes the formation of the scattered field from the
internal field. The matrix elements of RgQ and Q are
formally similar and can be expressed analytically as
integrals of products of vector spherical harmonics over
the particle surface. They differ only in the type of
spherical Bessel function used: regular for RgQ and
Hankel of the first kind for Q. In practice, these integrals
need to be evaluated numerically. For particles with
symmetry of revolution, the surface integrals reduce to
one-dimensional integrals with much simpler expressions
(relatively speaking); the number of integrals to be
evaluated is also reduced dramatically, as different m
values are decoupled. For this reason, a predominant
fraction of previous works, this one included, have
focused on axisymmetric particles.

The EBCM has been widely applied to a variety of
systems in both electromagnetic scattering (see [17] for a
comprehensive review) and acoustic scattering [18]; the
formulation is somewhat simplified in the latter case due to
the scalar (as opposed to vectorial) nature of the problem.
Despite these successes, it is also well-known that the
method suffers, under some conditions, from serious
numerical problems regarding convergence and loss of
accuracy [19]. Several improvements have been reported
on the commonly used implementation of Mishchenko [20],
notably to extend the range of numerical convergence for
large non-absorbing particles [21], and for strongly absorb-
ing particles such as metals [22]. Most work on these
aspects suggested that the crucial step in resolving issues
of numerical stability lies in the inversion of the linear
system (1). Increasing the numerical precision [23], or

improving the matrix inversion algorithm [24], was indeed
found to extend the domain of convergence of the EBCM.

With a different perspective, Waterman, recently revi-
siting the foundations of the EBCM, noted the appearance
of severe loss of precision in the calculation of the matrix
elements themselves, before performing the inversion,
clearly undermining the accuracy of any subsequent
numerical operation [25,26]. Waterman also proposed
some hints on where the origin of such loss of precision
might lie, namely the presence of important cancellations
in the calculation of the integrals. However, these findings
and remarks remained without formal justification.
Furthermore, Waterman'’s studies focused on two parti-
cular cases: acoustic scattering [26] (which is a scalar
problem) and electromagnetic scattering by an infinite
cylinder [25] (a 2D problem), thereby eluding the impor-
tant case of electromagnetic scattering in 3D. These
studies provide us with a starting point to further inves-
tigate important loss of precision in the T-matrix method
for electromagnetic scattering by axisymmetric bodies,
which is the subject of this work.

We here demonstrate in a systematic study that such
severe loss of precision does occur in the computation of the
Q-matrix integrals, in particular for widely studied particle
shapes that are generally considered as ideal case studies for
their simple geometries. The underlying cancellations are
particularly severe in the case of offset spheres, and to a
lesser degree spheroids. They are also more prominent for
small particles, but this may not be a problem if conver-
gence is achieved for small N. Large particles are typically
more problematic than smaller ones within the T-matrix
framework, as more multipoles (i.e. a larger N) are required
to describe the far-field scattering properties. While the far-
field properties of small particles with moderate aspect
ratios may reach a satisfying degree of convergence for
moderate values of N, accurate near-field calculations or
larger aspect ratios often require many more terms, and we
show that term for term, the cancellations are more severe
for small particles and may therefore compromise such
calculations. A mathematical demonstration of the origin of
such cancellations is provided, and its relation to the
possible numerical loss of precision is discussed.

This work has important consequences for the application
of the EBCM. Firstly, it highlights the fact that numerical/
convergence issues in the T-matrix approach are not solely
related to matrix inversion, but also to loss of precision in the
computations of the integrals before inversion. Secondly, it
suggests that more efficient implementations of the T-matrix
method, avoiding or even making use of these cancellations,
could be devised in the important case of spheroids. Thirdly,
it shows that the convergence and accuracy of numerical
implementations should not solely be tested on simple
shapes like offset spheres and spheroids because of the
shape-specific cancellations occurring.

2. Definitions and methods
2.1. Notations

We concern ourselves in this paper with particles having
a symmetry of revolution, more specifically cylinders,
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Fig. 1. Schematic illustration of the shapes and notations used to
describe the scattering problem. Particles with the geometries consid-
ered in this paper include (a) prolate spheroid, (b) cylinder, (c) offset
sphere, with common aspect ratio h=2. See Supplementary Information
for the parametric equations used to define these geometries.

spheroids, and offset spheres (a spherical particle for which
the T-matrix is evaluated from a point shifted from the
geometrical center). Schematics of these shapes are pre-
sented in Fig. 1, together with the definition of various
parameters of interest for the scattering problem. The
refractive index of the embedding medium (n;) and of the
particle (n,) are combined into a relative refractive index
defined as the ratio s=n;,/n;; we have used n; =1 and
n, =1.5+0.02i throughout this study, for consistency, but
the results are general (we have for example also tested the
case of silver particles in the visible). The incident wave is
characterized by a wavevector k; = 27tny /A, where 4 is the
wavelength in vacuum. The geometry is described in polar
coordinates as r(0); explicit expressions for the shapes of
Fig. 1 are provided in Supplementary Information (S.L.). The
particle aspect ratio is defined as h = rmax/"min, Where rmax
and 1, are the maximum and minimum values of r(0),
respectively (note that this definition may differ slightly
from other works in the case of a cylinder). Finally, the size
parameter is defined as the maximum value of x(6) = k1(0)
(again, this definition may differ from other works using, e.g.,
the radius of an equi-volume sphere).

2.2. The EBCM formulation

In order to further define our notations, we here
provide a brief summary of the EBCM method applied to
axisymmetric particles. We follow closely the formulation
and notations of Mishchenko [4], except for the final
expressions of the T-matrix integrals. Our group recently
presented a more concise formulation [27] resulting from
analytical simplifications of the integrals and alleviating
some additional cancellations from the original EBCM
equations. We therefore use these simplified expressions
(summarized below) in this study since they are
simpler to manipulate and more suited to the study of
cancellations.

We will focus in the following on the Q-matrix. For
axisymmetric particles (around the z-axis as in Fig. 1), the
problem is decoupled between different values of m
(angular momentum projection) and m can be viewed as
an implicit fixed parameter. The matrix elements are then
indexed by the total angular momentum only, denoted
n,k >|m| for row and column, respectively. We recently
showed that the entire Q-matrix can be expressed with
relatively simple expressions by computing the following
six types of integrals (see Ref. [27] for full details):

Kl = / d0 mdndixoEnt @)
Koy = / d0 mdndixg &, 3)
he= [ dosin Oxozadic )
L= [ do'sin Oxoduzié 5)
L= / d0 sin Od Xt &, —n(n+1)dnén), ©)
L4 = / d6 sin 0dnE, 5%t —k(k+ D . 7)

In these and the rest of the paper, we have made the
following simplification of notations:

dé,(2)
En=6(x(0) and & =—7— , 8)
dz z=x(0)
d
Yo =Wn(sx©@) and = 'i;;(z) : )
z = sx(0)
Tn=mmn(0) and T, = Tn(0), (10)
dy = dg,(0), an

where the angular functions 7p,, Tmn, dg,, are defined as
in Ref. [4], and the Ricatti-Bessel and Hankel functions
&y are defined as in Ref. [28].

As is customary, the Q-matrix elements are grouped

11 12

Q¥ Q2
the two types of VSWFs used in the series expansions of
the incident and scattered fields.

The Q—matrix elements are then given by [27]

-1

into a 2 x 2 block matrix Q = ( > in relation to

Qi = AnAk K (12)
2 =an ke, (13)
QL = —iAnA, {—sL +L+ %} . (14)
Qi = —iAnA | —Liy+ L +Lo Lnk:| , (15)
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where A,=./(2n+1)/2n(n+1)). For off-diagonal ele-

ments (nsk), the four L' integrals are not linearly inde-
pendent and we may therefore also use the following
simplifications [27]:

ol iAnAk(s?—1)/s

"= ) k4D < [+ 1)L, —k(k+1DLL], (16)

sn(n+1)(L3—LL)

n(n+1)—kk+1) | an

Q% = iAAS?—1)/s | L3 +

It is also worth noting that for particles with mirror
symmetry with respect to the xOy plane, we also have

K, =0 if n+keven; (18)

Le=0 if n+kodd. (19)

This is the case for example for the spheroid and cylinder,
but not for the offset sphere. For particles that present this
mirror symmetry, we may therefore study independently
two decoupled sets of matrices. The first set considers the
indices n,k both even for Q'', both odd for Q%2, even/odd
and odd/even in Q'? and Q?!, respectively. The comple-
mentary set contains the matrix elements with opposite
conditions (odd/odd, even/even, odd/even, even/odd,
respectively). In this paper we focus on the first set of
matrices (in particular on Q%2 with odd/odd indices) for
simplicity; our conclusions hold for either of them.

2.3. Numerical methods

Numerical computations were carried out both in
double precision and in arbitrary precision. Further details
on these two implementations are provided as Supple-
mentary Information. For a rigorous evaluation of the
numerical error in the T-matrix integrals, we proceeded as
follows. The arbitrary-precision (AP) code was first used
to compute the exact double-precision (DP) values of the
integrals, independent of any cancellations that may
occur. To this end, we first found the number of digits
and quadrature points required to obtain exact DP results.
This is achieved by checking that, to within double
precision, none of the matrix elements change when
either the precision (number of digits) or the number of
quadrature points is increased. In this study we required
that all of the (non-zero) values in both Q and RgQ had
converged to within double precision (first 16 digits in
agreement). As a rule of thumb, 100-300 quadrature
points were typically sufficient to reach convergence
(once this is determined, the same number of points is
used in the DP implementation for any comparison), but
up to 360 digits were necessary to obtain accurate DP
results in some cases, which in itself reveals the presence
of severe numerical cancellations. Once the AP results
have converged within DP, they can be used as a bench-
mark to test the double precision implementation against.

One may express the number of digits of agreement o/(A)
between the quantity A®” computed in double precision and
its exact (within DP) value A*" (assumed non-zero) as

computed in arbitrary precision as

DP_ pAP

o(A) = —logyo (20

AAI’

In general, the maximum number of digits in agreement
possible is of the order of log;,& where ¢ is the floating-point
accuracy, which in double precision gives omax ~ 16. In
instances of severe numerical errors, A°" may even be
different in magnitude from its correct value A®’. In this
case <0 and || is then a measure of the order of
magnitude of the error.

In the following we applied this methodology to the
systematic study of loss of precision in specific cases.

3. Demonstration of severe cancellations and associated
loss of precision

3.1. General considerations

In order to fix ideas, we here briefly describe what we
mean by severe loss of precision in numerical computing.
Loss of precision can in principle occur in a wide variety of
contexts. The case that is most relevant to us here is the
subtraction of two (or more) numbers of comparable magni-
tude but for which the difference is many orders of magni-
tude smaller. For example, using double-precision floating
point arithmetic, one can perform (in any double-precision
computing software) the following tests, chosen as illustra-
tions of increasingly problematic numerical cancellations:

110
a=10 "+7 _ %3 141592025756836,
b=10"
140
{‘;::840—”-[ a_bD:PO-

a=10°1/3)+n
{ (1/3) = a—b% _6x 10>,

b=10%(1-2/3)

In the first example, the DP result is only accurate up to the
6th decimal. We can precisely quantify the error using Eq.
(20) since we know the exact result (m): a(a—b)=6.7.
Increasing the exponent as in the second example, we then
get complete loss of precision and obtain a—b = 0 instead of
7 and a(a—b)=0, i.e. zero digits in agreement. The same
problem can in fact be further compounded by additional
rounding errors as in the third example where the DP
result is more than 20 orders of magnitude wrong
(a(a—b) ~ —23.3).

Such problems arise whenever |a—b| < |a+b|/2, with
complete loss of precision occurring when 2|a—b|/|a+b|
is of the order or smaller than the floating point accuracy
(~107'® in double precision). This is a well-known
problem in computing and there are in principle two
ways around it. (i) One may perform the computation
with increased precision, using for example arbitrary
precision arithmetic packages. This does not really cir-
cumvent the loss of precision, but simply increases the
precision such that, even after the loss, the remaining
accuracy is acceptable. This approach, which we used in
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this work for demonstration purposes, is unfortunately
resource-intensive and in particular extremely inefficient
in terms of computational speed. (ii) The other alternative
is to find a way to remove analytically the terms causing
the source of the cancellation (e.g. 10'° in the first
example) and therefore compute the terms (a and b)
and their difference (a—b) without the problematic terms
(which should cancel out exactly anyway). This approach
is obviously much better for problems where the origin of
the cancellation can be identified.

Such cancellation problems may also arise when
numerically evaluating integrals whose integrands are
much larger in magnitude than the integral, as in the
artificial example

01 21
I= /0.01 {0.01 22
The integrand maximum value is ~ 102 (at t=0.01), more
than 10%° times larger than the integral. Severe cancellations
occur during the summation, and such an integral cannot
reliably be computed numerically using standard methods.
For example, the quad function in Matlab yields 1.1 x 10*?
(i.e. an error characterized by o(l)~ —13). The problem
mainly arises from a characteristic property of this integral:
the integrand’s magnitude (i.e. the envelope of its absolute
value) varies widely across the range of integration (it is
~ 10% larger at t=0.01 than it is at t=0.1) and the integrand
has an oscillating character, taking both large positive and
negative values whose contributions cancel almost exactly.
This is a situation that occurs, as we shall see, in the T-matrix
integrals, though whether this results in cancellations and
therefore problems for the calculation of the integrals is
shape dependent.

tzz—?} dt=9 x 108, 21

3.2. Examples of cancellations in EBCM integrals for an
offset sphere

In Fig. 2 we illustrate the problematic numerical
integration of matrix elements for an offset sphere of

a K b
1 5 9 13 17 21 1 5 9
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relative refractive index s=1.5+0.02i, aspect ratio h=2,
and size parameter Xmax = 0.5 (this is equivalent to a
sphere of size parameter 0.375, but it is here offset by a
third of its radius). The matrix elements of the Q?? matrix
(for m=1) were calculated using Eq. (15) using either
double precision (DP) or arbitrary precision (AP), making
sure in the latter case that the result was exact at least to
16 digits (explicit values for the first column of the matrix
are also given as a table in Supplementary Information).
The color maps present the maximum modulus (magni-
tude) of the complex integrand (a) and of the DP integral
(b) and exact (AP) integral (c). The discrepancy between
the DP (b) and exact (c) integrals is further quantified by
computing the error from Eq. (20), which is graphically
represented as a color map in Fig. 3(d). This discrepancy is
particularly visible in the bottom-left corner of the matrix
(large n, small k), where o is negative (meaning that even
the order of magnitude is wrong). For example, Q73 is
found to be —9.32 x 10'°-2.42 x 10'% in DP, while its
correct value is 1.97 x 107°+2.56 x 107'%, equivalent
(from Eq. (20)) to an error o~ —26. This loss of precision
is understandable given the maximum magnitude of the
integrand, 1.93 x 103!, compared to that of the integral. In
fact, while both the integrand and the DP integral increase
in value with increasing n (Fig. 2(a,b)), the correct result
decreases (Fig. 2(c)). This behavior is suggestive of impor-
tant cancellations occurring in the integration of some of
the Lﬁlk integrals when n > k, the problem becoming worse
as n—k increases. Such large errors will inevitably result in
erroneous results upon inversion of the linear system (Eq.
(1)) to get the T-matrix, and this will be shown explicitly
later. We also note that, although T-matrix calculations
for offset spheres are an artificial example with no
apparent practical interest (since the results are more
reliably and easily obtained from Mie theory), they are
nevertheless often being used as a convenient test of the
validity of the EBCM approach or of its implementation.
This example suggests that this may not be a good
practice.

13

17

21

30
20

Fig. 2. Demonstration of cancellations and loss of precision in Q-matrix elements for an offset sphere, with s = 1.5+0.02i, m=1, N=21 and h=2. (a) Color
maps showing the magnitude (maximum modulus) of the odd-odd integrands of Q% indexed by their values of n and k in a base-10 logarithmic color
scale. Also shown are the magnitude of the corresponding integrals when computed in double precision (b), and in arbitrary precision (c). The
corresponding error between (b) and (c) is given as Fig. 3(d). (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
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Fig. 3. Top row: map of the base-10 logarithm of the magnitude of the odd-odd integrals in Q?? (computed in arbitrary precision and exact to double
precision). From left to right, (a) for an offset sphere, (b) a prolate spheroid, (c) a cylinder. The integrand magnitude is similar in all three cases and
follows that of the offset sphere shown in Fig. 2. Bottom row: (d-f) corresponding error represented as a color map of & (Eq. (20)), i.e. the number of digits
of agreement for odd-odd elements of Q%? between double precision and arbitrary precision results. Dots indicate that the order-of-magnitude is wrong
(o0 < 0). All results are shown for s = 1.5+0.02i, m=1, Xmax = 0.5 and h=2 (see Fig. 1 for definitions). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

3.3. Shape and size dependence

As hinted at before, severe cancellations such as those
evidenced in Fig. 2 are expected to be shape-dependent.
The same study was therefore carried out for particles of
different geometries, in particular spheroids and cylin-
ders. The results are summarized in Fig. 3, where the
offset sphere results are repeated for direct comparison. It
is clear from these maps that spheroidal particles suffer
from similar cancellations, albeit to a lesser extent, as
those observed for the offset sphere. No significant error is
evidenced however for cylindrical particles. A number of
additional cases were also investigated using Chebyshev
particles; the results obtained (not shown here) were
similar in essence to those of the cylinder, indicating that
the cylindrical particles are in fact more representative of
the general case. The offset sphere and spheroids appear
to be the only obvious cases where such cancellations
occur. This observation is reminiscent of the suggestion in
Refs. [25,26] that only so-called quadric surfaces exhibit
this behavior for acoustic scattering. We also present in
Table 1 numerical results for the three same particle

shapes in the case where k=1, where the worst errors
are observed. Two different size parameters are consid-
ered, Xmax = 0.5 and xmax = 5. While the cylindrical shape
shows again a good accuracy for the two sizes considered
here, the spheroid, and more dramatically the offset
sphere, both present an extreme loss of precision for
moderate n, with a size parameter xmax = 0.5. In the case
of larger particles, we observe better agreement than for
small particles in the Rayleigh regime, although the same
loss of precision eventually occurs as n is increased.
Finally, we also note that similar results are obtained
when considering other values of m and other parts of the
Q-matrix, for example the even-even elements of Q22
the elements of Q'%, Q2', Q!', or by directly examining
the K, and L}, matrix elements used in the computations.
In contrast, no significant loss of precision was evidenced
in the computation of the RgQ matrix.

3.4. Consequences for the calculation of the T-matrix

As noted earlier, large errors in the magnitude of some
of the matrix elements, even if they are isolated to a
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Table 1

Number of correct digits in elements of Q%2, for k=1, m=1. Negative
values (in italics) indicate that the order of magnitude is incorrect. For all
cases, the aspect ratio is fixed to h=2, the relative refractive index is

O ~ -

Xmax n Offset sphere Spheroid Cylinder
0.5 1 14 14 14
5 12 13 15
9 -4 8 10
19 -26 -3 8
5 1 14 14 14
5 14 14 14
9 13 14 14
19 8 12 13

corner of the matrix, are very likely to result in further
numerical errors upon solving the linear system (Eq. (1))
to obtain the T-matrix. We demonstrate this important
consequence in Fig. 4 by examining the error in the
resulting T-matrix in the case of a spheroid. We observe
that the solution of the linear system in double-precision
is substantially improved when the Q-matrix was com-
puted reliably in arbitrary precision, and truncated to 16
digits. As an indicator, the condition number of the Q
matrix was 2.4 x 10>*® when computed in double-preci-
sion, and 8.1 x 10* in arbitrary-precision. The matrix RgQ,
not suffering cancellations, does not affect the inversion.
Those results were compared against the accurate com-
putation of Q and the inverse of the linear system in
arbitrary-precision. This example demonstrates the
importance of a robust integral evaluation, independently
from the more commonly considered inversion problem,
in the numerical accuracy of the T-matrix method. Indeed,
the DP inversion results in an almost perfectly accurate
T-matrix, provided that the exact Q-matrix (computed in
AP) is used. In contrast, large errors appear in some part of
the T-matrix for a full DP implementation. Such errors are
likely to affect further computations of scattering proper-
ties from the T-matrix, although this will depend on
whether the problematic matrix elements contribute or
not to the scattering property under consideration. This is
illustrated in Fig. 5 for the extinction coefficient Qgy. For
an aspect ratio of h=2 (same as the one used in Fig. 4), the
full DP calculation of Qg converges to almost the exact
results for N=10, but subsequently deteriorates (see
Fig. 5(a)) as the errors in the T-matrix (Fig. 4(b)) start to
contribute. This will however not affect our ability to
compute Qgy, to a high precision because (Fig. 4(b)) only
depends on relatively small n<10 in this case. Other
physical properties, like the electric field in the vicinity of
the particle, will however require much larger n to be
computed accurately, and this will be prevented in a full
DP implementation by the errors in the T-matrix resulting
from the integral evaluations. Moreover for either larger
particles, or particles with a larger aspect ratio, then
larger n are also needed, and the errors in the T-matrix
can become a problem even for far-field properties such
as Qgy. This is illustrated in Fig. 5(b) with a higher aspect
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Fig. 4. Error in the T matrix of a spheroid with same parameters as in
Fig. 3 after inversion in DP of the linear system (1), where the elements
of RgQ,Q were computed in either AP (a), or DP (b). In both cases the
inversion is computed in DP. The error is evaluated by performing all
calculations, including the inversion step, in AP. The very good agree-
ment in (a) compared to the large errors in (b) demonstrates that the
problem lies here in the accurate computation of the Q matrix, not in its
inversion.

ratio, h=20. The computed Qg starts to diverge (because
of the T-matrix errors) as early as N> 7.

4. Origin and proof of the cancellations

A quick comparison between Fig. 2(a) and (c) provides
a first hint of the origin of these cancellations: while the
magnitude of the integrand for the offset sphere increases
with n, the integral exhibits the opposite behavior. In
order to reconcile this apparent contradiction, the follow-
ing argument is proposed. First, a series expansion of the
integrand is developed as a function of the angle-depen-
dent size parameter. Upon individual examination of the
dominant terms, we observe that a number of them can
integrate to zero in specific cases that depend on n,k and
the particle shape. To test this hypothesis, we have used a
numerical approach to determine the scaling proper-
ties of the integrals. This practical analysis, though not
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Fig. 5. Error in the extinction coefficient for light incident along the
rotation axis of a spheroid as a function of N with h=2 and h=20 when
Q was computed in both arbitrary and double precision, as compared to
the converged value for the arbitrary precision. Here Xmax =0.5 and
s=1.5+0.02i. The arbitrary-precision results converge to a value
(5.33 x 1073 and 3.82 x 10~ for h=2 and h=20, respectively), while
the double-precision results approach that value and then diverge as the
cancellations start to play a part.

constituting a formal proof, provides a simple and effi-
cient way of testing for the presence and the extent of
similar cancellations for any shapes. As such, it is worth
presenting its principle and its main conclusions before
getting to the more rigorous proof.

4.1. Numerical investigations

The aim of the method is to determine the scaling law
for the integrals K, and L!, (Egs. (2)-(7)) for a given
shape as a function of the size parameter, which we
assume takes the form of a power law: Iocxf .., at least
in the small size regime. The rationale behind this
assumption is that all the integrands in Egs. (2)-(7) follow
such a power law (from the small argument expansion of
the Bessel functions [28]), and one would therefore expect
the power law with the same exponent for the integral, if
cancellations do not occur. For example for the integrand
of L}, we have

XoEn (W (5X) oc Xpxk T oc xkon+2, (22)

This approximation is in fact good over a relatively large
range of parameters, typically up to x ~ n,k if |s| is not too
large. We should expect that the integral follow the same
scaling law, unless this dominant term integrates exactly
to zero.

The exponent of the power law for the integral can be
obtained by computing the exact integral value (using
arbitrary-precision) for different size parameters in the
small size regime. Let us consider as an example the case
of L;'k, which is illustrated in Fig. 6. According to Eq. (22),
the integral should scale, like the integrand, as xX2+2, in
the small size regime. The calculations of the integrals in
arbitrary precision suggest that they do follow this scaling
law for the cylinder, but for offset spheres and spheroids,
this is only the case when k> n. If n >k however, the

+ cylinder ¢ sphere x spheroid
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Fig. 6. Numerical determination of the scaling laws for the integral of
L,llk for different shapes. The difference in scaling factors (gradients) for
the different shapes is evident below the diagonal (bottom row), while
on or above the diagonal (top row) they are identical. The lines are a fit
to the data in the small-size regime (xmax < 1), and the exponents given
are accurate to the second decimal place. In all cases the integrand’s
scaling was the same as that of the cylinder.

integral scales as x"-X for an offset sphere and as x9,.,
(constant) for a spheroid. This clearly shows the presence
of cancellations in these two cases, where the dominant
terms must integrate to zero to modify the scaling law.
More explicitly, we may write for the offset sphere the
Laurent series of the radial part of the integral as

XoEn (W (SX)Tndy
p=n—k-2 0o
= > 7pOxexXPTadi+ Y 7,%XPTadi. (23)
p=k-n+1 p=n—k-1

The fact that the integral is observed to scale as x%X
suggests that the first sum does not contribute at all and
must therefore integrate to zero. In fact, we will demon-
strate later an even stronger result: each individual term
in this sum integrates to zero. A similar—albeit not as
dramatic—situation arises for the spheroid where the
sum up to p = —2 should integrate to zero. This explana-
tion also reveals why no cancellation is observed when
k > n, since the first sum only exists when n > k+1.
Such a scaling study was systematically carried out for
all integrals (Egs. (2)-(7)); the results are summarized in
Table 2, showing that the cancellations are present in
every integral for the offset sphere and the spheroid. For a
general shape (illustrated here by cylinders and Cheby-
shev particles), the scaling is the same for both integrand
and integrals, suggesting that such a cancellation
mechanism does not operate. We note that a similar
observation was made in Ref. [25] in the context of
acoustic scattering, where it was postulated that for
complete quadric surfaces (the analog of our spheroid
here), the contribution of negative powers of x is zero. Our
results generalize this observation to the more complex
case of electromagnetic scattering, where the actual
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Table 2

The scaling exponent (p) of integrands and integrals with respect to the
size parameter Xmay, for different particle geometries, and n > k. For all
particles except the Chebyshev, s=1.5+0.02i, h=2. In the case of the
Chebyshev particle, the parameters were s=1.5+0.02i, ¢=0.15, and
n=3 and n=4 were used. This notation follows that of Mugnai and
Wiscombe [29].

Integral Integrand Offset sphere Spheroid Cylinder Chebyshev

K'ocQ'? k—n+1 n—k+1 0 k-n+1 k-n+1
K?ocQ?' k—n+1 n—k+1 0 k-n+1 k-n+1
L' k-n+2  n-k 0 k-n+2 k-n+2
L? k-n+2  n-k 0 k-n+2 k-n+2
L k—n n—k 0 k—n k—n
L* k—n n—k 0 k—n k—n
Q" k-n+2  n-k 0 k-n+2 k-n+2
Q% k—n n—k 0 k—n k—n

scaling varies slightly from one integral to another.
Furthermore, in the case of offset spheres, we find that
approximately the same number of terms of non-negative
powers also make no contribution.

4.2. Analytical study of the cancellations

Using the numerical scaling study as a guide, a rigor-
ous proof of these results was developed. Details are given
in Appendix for the spheroid and in Supplementary
Information for offset spheres. We here only sketch the
key principles and conclusions. We start from Laurent
series expansions of the radial part of the integrands, such
as the one given in Eq. (23). It is then possible to prove
that each individual term, denoted Ap, in the first sum
integrates to zero when x(6) describes an offset sphere.
The same can be proved for a spheroid, although fewer
terms integrate to zero (as predicted from the scaling
study presented earlier). The central argument in these
proofs is to express the term x,x(0) in a basis of Legendre
polynomials P,O(cos(e)) (which essentially means that they
are polynomials of cos 0). Moreover, the angular functions
dn(0) are proportional to associated Legendre functions
(with order m) or in the case of 7,(0) can expressed as a
sum of associated Legendre functions. As a result, A, can
be rewritten as a sum of products of three associated
Legendre functions, one of which has order zero (i.e. is a
Legendre polynomial). The key result to integrate these
products is the use of Gaunt’s formula [30], from which
we use the following special case:

T
/ d6 Py (cos 0)P}(cos O)P)(cos B)sin 0 =0
0

[n—k| >p
if¢ or (24)
n+k+p is odd.

It is possible to show that the terms where this condition
is satisfied are precisely the terms that were identified in
the scaling study as making no contribution to the
integral. A number of more subtle technical difficulties
can be encountered in the formal derivation of the results

of Table 2. In Appendix A we present in details the
complete proof in the case of a spheroid, while the
detailed proof for offset-spheres is given in Supplemen-
tary Information. These proofs could be used as a guide to
find other special shapes where such cancellations
may occur.

4.3. Influence of other parameters

The results of Fig. 3 suggest that the cancellations, and
the important resulting loss of precision identified in this
work are more prominent for small size parameters. This
is in fact naturally explained now that the origin of these
cancellations has been identified. Most of the terms in the
series expansion of the integrand that integrate to zero
(and therefore cause the problems) are proportional to x?,
with p negative. Their magnitude therefore increases
dramatically as the size parameter decreases, thereby
causing more numerical problems for given n,k values.
We should however note that since larger values of n,k
are typically needed for larger particles, this requirement
is also likely to result in cancellation problems for large
particle size, at least for matrix elements with large n and
small k.

A similar remark applies to particles with large aspect
ratio. We carried out numerical tests of the effect of these
cancellations on particles with larger aspect ratio and did
not find any evidence that the cancellations were more
significant for a given matrix element (given n and k).
However, as for large size parameter, large aspect ratio
require the computation of a larger matrix and the
cancellations will therefore become increasingly proble-
matic as N is increased, as already pointed out in Fig. 5.

Finally, the fact that the problematic terms are of the
form xP with p negative also explains why the right-upper
part of the Q matrix and the entire RgQ matrix do not
suffer from such cancellations: such terms are simply
absent from the Laurent expansion in those cases.

5. Conclusion and outlook

In conclusion, we first summarize the most important
consequences of our demonstration of these severe can-
cellations. Firstly, it highlights a number of new features
and counter-intuitive facts about the EBCM approach,
notably: (i) numerical instabilities are not only due to
problems in the inversion of the linear system of Eq. (1);
severe loss of precision when computing the integrals
(before inversion) are likely to contribute, possibly dom-
inantly, to the problems in the case of offset spheres and
spheroids; (ii) small-size particles, even with moderate
aspect ratio are not immune from numerical problems;
(iii) simple shapes such as offset spheres and spheroids
are special cases. Numerical problems arising for these
particular shapes may not be representative of those
arising for other more general shapes. This needs to be
borne in mind when testing convergence or accuracy of an
EBCM implementation using these simple shapes. This
remark leaves open the question of what should be the
benchmark of choice for T-matrix calculations, since no
other shapes admit a straightforward and rigorous solution
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(using other methods) that could be used as a standard for
comparison.

This work also opens up a number of potential new
avenues for improving the accuracy and efficiency of the
T-matrix/EBCM method, especially in the important case
of spheroids. Our scaling study shows that all the spher-
oid integrals exhibit the same scaling factor. This suggests
that the Q-matrix, if computed accurately, should be well-
balanced and therefore easily invertible in double preci-
sion (this is precisely what Fig. 4 demonstrates), even for
large matrices (for example for large aspect ratio). Arbi-
trary-precision computations could be used, as in this
work, but are typically time-consuming. It would there-
fore be of great interest to devise a method to compute
these integrals accurately and efficiently, e.g. taking into
account, and removing, the terms causing cancellations.
The identification of the origin of these cancellations, as
presented here, is the first step toward such a goal. In the
case of offset spheres it is not so critical to improve the
method, as Mie theory readily provides the necessary
results.
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Appendix A. Formal proof of cancellations for spheroids

Preliminary results: We will use the Laurent expansion of
the spherical Bessel functions. Although the actual coeffi-
cients of these expansions are not relevant to our proof, it is
important to identify the highest order term in the series
and highlight the fact that only every other term is present,
at least up to some order in the case of &,, namely

W (sx) = xk+1 i g (5)X%, A1)
q=0
q=n
En=xT"" Bpx? T+ O™, (A2)
q=0

In these expressions, Greek letters are used to denote
coefficients whose actual value are not relevant to the proof.
We use the same convention in the rest of this appendix
(with the obvious exceptions of the angular functions t, and
7y, and the radial functions &, and ).

As explained in the main text, one key ingredient of
the proof is the use of Gaunt’s formula (Eq. (24)). We will
more precisely show that some of the elements in the
Laurent series of the form x(6)® can be expressed as
polynomials of cos 0. We therefore define the notation
Pn(cos 0) to denote a polynomial in cos 0 of degree N or
less (the coefficients of which are not relevant to this
proof). Then we use the fact that the set of Legendre
polynomials Po(X) with 0<n<N forms a basis for the
vector space Ry[X] of real polynomials of degree N,

therefore

N
Pr(cos 0)= > o,nPY(cos(0)). (A3)
v=20
Gaunt'’s formula (Eq. (24)) therefore implies in particular
that

T
/ d0 dn(0)d(0)Py(cos O)sin 0 =0
0
if p<|n—k|-1. (A4)

We will also need to use a similar expression, but
involving 7, rather than d,. To find it, one can use the
following property of the angular functions

sin 0ty = Kndp 1+ Andp_1. (A.5)

Using Eq. (A.4) on each term on the right hand side, we
therefore find the equivalent for 7,

n
/ d0 sin Oty (0)dy(0YP,(cos O)sin 0 = 0
Jo
if p<|n—k|-2. (A.6)

Note that we are looking here for a sufficient condition,
but it may not be a necessary condition.

Spheroid-specific results: In this appendix we are con-
cerned solely with a spheroid of revolution with semi-
axes c along z and a along x,y, whose geometry is defined
in Supplementary Information. We will in particular use
the following (easily derived) relations:

22
X—;’ = az & sin 6 cos 0, (A7)
X k2 a2c2

1 2

Z= o+ cos? 0 (A.8)
sin 0 . Xp cos 0

—2 =7sin 0+=2 R (A.9)

where «, 8, and y are constants.
From these, we also get for ¢ >0

}% = cos 0 sin O(a+ Bcos? 0)T = sin 0P, , 1(cos 0),
(A.10)

sinf . 2 Mg+l o

prEs sin O(o.+ f cos” 0)1% " =sin 0Pyq,2(cos 0).  (A.11)

K" and K? integrals: We consider first the case of K},

K= / d0 mddixeEa . (A12)
0

We also assume that n+k is odd, as K}, =0 if n+k even.
Both spherical Bessel functions can be expanded as a
Laurent series as in Egs. (A.1) and (A.2); in particular we
have (forn>k=>1)
1 9% n—k
= D OnkgOXM I+ OR™KT) (A13)
q=

o

and the integral can therefore be rewritten as a sum

p=n-k
K=" Vup®Knkp + O k+2), (A14)
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where
K= [ 40 xix0Pdu©d 0 (a15)

The scaling study (with an exponent zero for the
power law of the integral) suggests that cancellations
arise because a number of the leading K,,kp terms are zero,
more precisely: Knkp =0 for k—-n<p<-3, but Knkp #0 for
p=—1 (because xpx~! scales as x%,,). We note that if
k—n > —3, then no such cancellations occur, so only the
bottom-left part of the matrix is subject to this problem.
We therefore implicitly assume n > k+3 in the following.

Let us consider K;kp for p odd and p < —3 and define for
convenience q = —(p+3)/2, which must be a non-negative
integer. We then substitute Eq. (A.10) in Eq. (A. 15) and
using Eq. (A.4) (Gaunt’s formula), we deduce that I(nkp 0
if 2g+1 < |n—k|—1 or since |n—k| is odd if |[n—k| > 2q+3,
equivalent to k—n < p. This is precisely what we set out to
prove. It is also worth noting that this proof does not work
for p> —1 (since q is then negative), as expected from the
scaling study. Finally, the same arguments can be readily
applied to the cancellations occurring in K2,.

L' and L? integrals: We now consider the case of L},

nk / do sin G‘Cndkx()énl//k (A-]E’)

We also assume that n+k is even, as Ly, = 0 if n+k is odd.

As for K}, we can write
p=n—k-1
Lnk Z Vakp (S)L111kp + O(Xﬁl;’;(+ ! ), (A'] 7)
P :pk0+d(l‘—n
where
LYy = / 40 XX (O sin 0a(0)di(0). (A.18)

The scaling study (with an exponent zero for the
power law of the integral) suggests that cancellations
arise because Lnkp =0for k+1-n<p<-3, but Lnkp #0 for
p=-1. We note that if k+1-n> -3, then no such
cancellations occur, so only the bottom-left part of the
matrix is subject to this problem, as for K},. We therefore
implicitly assume n > k+4 in the following.

Using the same reasoning as for K!,, we consider
p<-3 and set g=—(p+3)/2 (a non-negative integer),
then substitute Eq. (A.10) in Eq. (A.18). Using Eq. (A.6)
(our corollary to Gaunt’s formula using 7,), we deduce
that Ly, =0 if 2g+1 < |[n—k|-2, or since |n—k| is even if
|[n—k| > 2q+4, equivalent to k—n+1 < p, as desired. Again
the proof would fail for p> —1 as expected. The same
proof can be applied to Lﬁk.

L® and L* integrals: We now focus on the more
complicated case of L3,

L= [ d0sin 0dpiixtad,—nmn+ il (A19)

We here assume that n+k is even, as L}, = 0 if n+k is odd.

In this case, one is tempted to split the integral into a
sum of two, each being in many respects similar to the
cases we have treated so far. This approach works to some
extent, demonstrating cancellation of all predicted terms
in the expansion, except for the dominant (lowest order)

term. In fact, if one applies the scaling study to each of
these two integrals, it is clear that no cancellation occur
(which is because the highest order term does not
integrate to zero). However, severe loss of precision
occurs when summing these two integrals and the can-
cellations therefore do occur when evaluating L3, as one
integral. This observation suggests that we need to con-
sider the entire integrand to prove the cancellation of the
dominant term. For this, we proceed as before; the
spherical Bessel functions are expanded as Laurent series,
but we isolate the highest order term and explicitly
calculate its coefficients

p=n+k-1

Lnk Z

p=k-1-n
p odd

Ly +OXLERET), (A.20)

max

where
nkp / do sin Qdk[“nkq(s)xﬁxpfn + .Bnkq(s)xp+ ! dn] (A 21)

and more explicitly for p = k—1—n, we use the fact that for
the highest order term &), oc —né&, to get
L3

nkp|p: f1on = /) d0 dj, sin 0y,,(s) x [nXeXP T +n(n+DxP+1d,].

(A.22)

Note that due to the absence of x, in the second term of
these integrals, both terms scale as x2;5).

The scaling study (with an exponent zero for the
power law of the integral) suggests that cancellations
arise because Lnkp =0 for k—-1-n<p< -3, but Lnkp #0 for
p=-1. We note that if k—1-n> -3, then no such
cancellations occur, so only the lower-left part of the
matrix is subject to this problem, as before. We therefore
implicitly assume n> k+2 in the following.

The first part of L,,kp has the same form as Lnkp and we
have already shown that it is zero for k-n+1<p<-3
(i.e. for all desired terms except the dominant one
(p = k—n—1)). For the second part, we need to show that
the integral

32 = / d0 xP*dyd, sin 0 (A.23)

is zero. To this end, we define as before q=—(p+3)/2
(g =0), which implies —(p+1)=2q+2. We now substi-
tute Eq. (A.11) in Eq. (A 23) and use Gaunt’s formula (Eq.
(A.4)) to deduce that Lnkp =0if 2q+2 < |n—k|-1, or since
[n—k| is even if |[n—k| > 2q+4, equivalent to k—n-+1 <p,
which again corresponds to all desired terms except the
dominant one (p=k—n-1).

To conclude the proof, we now need to prove that the
dominant (lowest order) term (Eq. (A.22)) also integrates to
zero. For this, we use Eq. (A.9) to re-arrange it as follows:

T
Likp ‘p =k-1-n = /0 do nynk(s)dkxp+3

X [)%rn sin 0+(n+1)§—g cos 0d, +7(n+1)sin an]
(A24)

We then recognize the relation between angular functions

(n+1)cos 0d, +sin 01, = y/(n+1)>—m2dp . 1, (A.25)
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and obtain
Lﬁkp\p k= ;7nk(s)/0 d0 nxgxPd,dy, 1

+hlS) / d0 nx+3d, dy sin 0. (A.26)
JO

The first part has the same form as K} +1kp and is in

particular zero for p=k-n—1. The second part has the

same form as L ), and is therefore zero for p = k—n—1.

This completes the proof that the dominant term does
integrate to zero, and therefore the proof of the cancella-
tions for L3. A similar proof can be applied to L* although
the results are also a direct consequence of the fact that L*
can be expressed as a linear combination of L?, [2, [* [27].

Appendix B. Supplementary data

Supplementary data associated with this article can
be found in the online version at doi:10.1016/j.jqsrt.2012.
01.007.

References

[1] Kahnert FM. Numerical methods in electromagnetic theory. ] Quant
Spectrosc Radiat Transfer 2003;79-80:775-824.

[2] Draine BT, Flatau PJ. Discrete-dipole approximation for scattering
calculations. ] Opt Soc Am A 1994;11:1491-9.

[3] Yee K. Numerical solution of initial boundary value problems
involving Maxwell's equations in isotropic media. IEEE Trans
Antennas Propag 1966;14:302-7.

[4] Mishchenko MI, Travis LD, Lacis AA. Scattering, absorption and
emission of light by small particles. 3rd ed. Cambridge: Cambridge
University Press; 2002.

[5] Mie G. Contributions to the optics of turbid media, particularly of
colloidal metal solutions. Ann Phys 1908;25:377-445.

[6] Bohren CF, Huffman DR. Absorption and scattering of light by small
particles. New York: John Wiley & Sons Inc.; 1983.

[7] Mishchenko M, Travis LD. Gustav Mie and the evolving discipline
of electromagnetic scattering by particles. Bull Am Meteorol Soc
2008;89:1853-61.

[8] Mishchenko MI. Light scattering by randomly oriented axially
symmetric particles. ] Opt Soc Am A 1991;8:871-82.

[9] Mackowski DW, Mishchenko MI. Calculation of the T matrix and
the scattering matrix for ensembles of spheres. ] Opt Soc Am A
1996;13:2266-78.

[10] Waterman PC. Matrix formulation of electromagnetic scattering.
Proc IEEE 1965;53:805-12.

[11] Mackowski DW. Discrete dipole moment method for calculation of the
T matrix for nonspherical particles. ] Opt Soc Am A 2002;19:881-93.

[12] Loke VLY, Nieminen TA, Parkin S], Heckenberg NR, Rubinsztein-
Dunlop H. FDFD/T-matrix hybrid method. ] Quant Spectrosc Radiat
Transfer 2007;106:274-84.

[13] Doicu A, Wriedt T, Eremin YA. Light scattering by systems of
particles: null-field method with discrete sources: theory and
programs. In: Springer series in optical sciences, vol. 124. Berlin:
Springer; 2006.

[14] Garcia de Abajo FJ, Howie A. Relativistic electron energy loss and
electron-induced photon emission in inhomogeneous dielectrics.
Phys Rev Lett 1998;80:5180-3.

[15] Nieminen T, Rubinsztein-Dunlop H, Heckenberg N. Calculation of
the T-matrix: general considerations and application of the point-
matching method. ] Quant Spectrosc Radiat Transfer 2003;79-80:
1019-29.

[16] Schulz FM, Stamnes K, Stamnes ]]. Scattering of electromagnetic
waves by spheroidal particles: a novel approach exploiting the T
matrix computed in spheroidal coordinates. Appl Opt 1998;37:
7875-96.

[17] Mishchenko MI, Videen G, Babenko VA, Khlebtsov NG, Wriedt T. T-
matrix theory of electromagnetic scattering by particles and its
applications: a comprehensive reference database. ] Quant Spec-
trosc Radiat Transfer 2004;88:357-406.

[18] Waterman PC. New formulation of acoustic scattering. ] Acoust Soc
Am 1969;45:1417-29.

[19] Barber P. Resonance electromagnetic absorption by nonspherical
dielectric objects. IEEE Trans Microwave Theory Tech 1977;25:
373-81.

[20] Mishchenko MI, Travis LD. Capabilities and limitations of a current
FORTRAN implementation of the T-matrix method for randomly
oriented, rotationally symmetric scatterers. ] Quant Spectrosc
Radiat Transfer 1998;60:309-24.

[21] Wielaard DJ, Mishchenko MI, Macke A, Carlson BE. Improved T-
matrix computations for large, nonabsorbing and weakly absorbing
nonspherical particles and comparison with geometrical-optics
approximation. Appl Opt 1997;36:4305-13.

[22] Moroz A. Improvement of Mishchenko’s T-matrix code for absorb-
ing particles. Appl Opt 2005;44:3604-9.

[23] Mishchenko M, Travis L. T-matrix computations of light scattering
by large spheroidal particles. Opt Commun 1994;109:16-21.

[24] Petrov D, Shkuratov Y, Videen G. Optimized matrix inversion
technique for the T-matrix method. Opt Lett 2007;32:1168-70.

[25] Waterman PC. The T-matrix revisited. ] Opt Soc Am A 2007;24:
2257-67.

[26] Waterman PC. T-matrix methods in acoustic scattering. ] Acoust
Soc Am 2009;125:42-51.

[27] Somerville WRC, Auguié B, Le Ru EC. Simplified expressions of the
T-matrix integrals for electromagnetic scattering. Opt Lett 2011;36:
3482-4.

[28] Abramowitz M, Stegun IA, editors. Handbook of mathematical
functions. New York: Dover; 1972.

[29] Mugnai A, Wiscombe W]J. Scattering from nonspherical Chebyshev
particles. I: cross sections, single-scattering albedo, asymmetry
factor, and backscattered fraction. Appl Opt 1986;25:1235-44.

[30] Gaunt JA. The triplets of helium. Philos Trans R Soc London A
1929;228:151-96.


dx.doi.org/10.1016/j.jqsrt.2012.01.007
dx.doi.org/10.1016/j.jqsrt.2012.01.007

	Severe loss of precision in calculations of T-matrix integrals
	Introduction
	Definitions and methods
	Notations
	The EBCM formulation
	Numerical methods

	Demonstration of severe cancellations and associated loss of precision
	General considerations
	Examples of cancellations in EBCM integrals for an offset sphere
	Shape and size dependence
	Consequences for the calculation of the T-matrix

	Origin and proof of the cancellations
	Numerical investigations
	Analytical study of the cancellations
	Influence of other parameters

	Conclusion and outlook
	Acknowledgments
	Formal proof of cancellations for spheroids
	Supplementary data
	References




