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Abstract

e optical properties of gold in the visible are dominated by the response of the free
conduction electrons to light. In gold nanostructures, the surface charge density ad-
opts a con guration that is constrained by the shape of the nanoparticles. As a result,
the scattering of light by gold nanoparticles exhibits a resonant response characterised
by a strong scattering and absorption in a narrow range of frequencies. e spectral
range of this localised surface plasmon resonance (LSPR) can be tuned by varying the
size and shape of the gold nanoparticle — the nanoparticles act as nanoscale antennas
for the visible light. Con rmation of this scaling rule is obtained by conducting ex-
periments with nanoparticles of varying size and aspect ratio. Such particles are fab-
ricated by electron-beam lithography, and characterised by dark- eld spectroscopy.
Not only does the LSPR shi in frequency with a change of particle size, but its spec-
tral lineshape is also modi ed. e intensity and width of the LSPR are dictated by
a variety of factors that are related to the intrinsic material properties (the complex
dielectric function of gold), and to the particle geometry and environment.

e optical response of small gold nanorods is well described by a simple oscillating
dipole model — the incident electromagnetic eld induces a current in the particle
that re-radiates light (scattering). A series of re nements can be made to model more
accurately the optical response of realistic particles. If the dipole moment character-
ising the particle is allowed to vary in phase across the particle, retardation effects
provide a correction for the effective dipole moment of the particle. As the particle
size approaches the wave length in the surrounding medium, the dipolar approxim-
ation breaks down and higher order multipoles need to be considered. e Mie the-
ory provides a very accurate description of the response of spheres of arbitrary size.
Further, the T-matrix and other numerical techniques can be employed to accurately
reproduce the scattering properties of particles of arbitrary shapes.

When the scattering sample consists of a collection of gold nanoparticles, the collective
optical response is affected by two key factors. First, the measured LSPR is a convolu-
tion of the distribution of particle sizes with the individual response of a single particle.
is leads to an inhomogeneous broadening of the LSPR lineshape. Second, the light
that is scattered by one such particle near resonance can strongly affect its neighbours
which scatter light in proportion to the net eld they experience, that is the sum of
the incident eld plus the perturbation arising from the neighbouring particles. e
onset of such multiple scattering events is observed even for particle separations that
are several times larger than the particle size.
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Several regimes of interaction can be distinguished according to the ratio separation /
wavelength. First, when the particles are in close proximity (separation≪wavelength),
near- eld interactions dominate and result in a spectral shi of the LSPR accompan-
ied with a spectral broadening. Second, when the separation is commensurate with
the wavelength, a coherent interaction can develop that couples a large number of
particles. In ordered arrays, such coupling gives rise to a geometrical resonance that
can strongly affect the LSPR of the particles. In particular a sharp spectral feature is
observed that depends on both the single particle response and the geometrical ar-
rangement of the particles in the array.

e coherence of such multiple scattering in diffractive arrays of gold nanoparticles
can be broken by introducing disorder in the distribution of particle sizes, or in the
particle positions. e optical properties of an irregular array re ect the departure
from a periodic system and the spectral lineshape evolves as the level of disorder is in-
creased. In the limit of uncorrelated positions, the diffractive coupling is suppressed
and the response of the collection of the particles rejoins the response of isolated
particles.
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Would you tell me, please, which way I ought to go from here?’
‘That depends a good deal on where you want to get to,’ said the Cat.
‘I don’t much care where–’ said Alice.
‘Then it doesn’t matter which way you go,’ said the Cat.
‘–so long as I get somewhere,’ Alice added as an explanation.
‘Oh, you’re sure to do that,’ said the Cat,
‘if you only walk long enough.’

Lewis Carroll
1

Introduction

T      has as its objective the study of the interesting optical
properties of gold nanoparticles. e interaction of light with gold nanostructures is part of

a rich eld of optics called plasmonics which comprises the study of the interaction of light with
planar metal-dielectric interfaces, and with sub-wavelength metallic structures [1, 2]. is thesis
was motivated by the recent development of applications of such gold nanostructures as optical
biosensors [3, 4].

is introductionwill rst outline the principle of a plasmonic-based sensing technique. Second,
I will present a brief historical review of the study of metallic particles. Lastly, I will give an outline
of the material discussed in the chapters of this thesis.

1.1 Sensing using surface plasmons

is work was part of a wider collaborative project to exploit surface plasmons for biosensing. e
results in this thesis arose from a need to better understand the optical response of arrays of gold
nanoparticles.

Real-time analysis of biochemical reactions is of great practical interest and is the subject of
ever-growing activity [4, 5]. Amongst all sensing and characterisation techniques, non-intrusive
optical sensors are markedly attractive. Using light as a probe of a chemical reaction in a biolo-
gical sample offers the advantage of a non-invasive detection technique (visible or infra-red light
does not damage the tissues for sufficiently low intensities). e use of an electromagnetic wave
con ned near the surface of the sample provides an efficient probe for the sample that is to be in-
vestigated optically [6–15]. Surface-plasmons —which are de ned as a collective oscillation of the
free electrons at the interface between a metal and a dielectric [2, 16], provide just such an electro-
magnetic wave bound to the surface. Figure 1.1 illustrates the principle of optical sensing assisted
by surface-plasmons.
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Figure 1.1: Schematic principle of optical sensing using surface-plasmons. (a) e sample consists
of a substrate (typically glass), covered with a material to be characterised (typically, a buffer solu-
tion with a range of analytes in different concentrations). (b) e substrate is manufactured so as
to support an electromagnetic mode bound to the surface. For example, the glass substrate can be
coated with a thin gold lm that supports a propagating surface-plasmon at the interface with the
buffer solution. Another example is an array of gold nanoparticles deposited on the substrate. (c)
An incident light beam is coupled to the surface mode. A detector is used to collect the re ected
or transmitted light that has interacted with the surface mode.

e substrate is treated so as to offer an adapted platform for the chemical reactions that are to
be monitored. A variety of surface treatments and surface chemistry have been developed for both
glass and gold interfaces [4]. In biosensing, themolecules of interest are usually delivered in a buffer
solution that de nes a bulk refractive index environment above the sensing platform. For a given
optical sampling area (typically a beam spot of several microns square), the sensing volume is only
a small part of the actual liquid sample. An important issue is to provide an adapted uidics system
ensuring that the target molecules are efficiently into contact with the sensing area. Further, in a
biological environment hundreds of different molecules are generally present in the solution even
aer puri cation. A high-throughput sensor array would present a collection of speci c binding
agents arranged on a single chip, different chemical spots monitoring the competition of binding
of different components [12, 17].
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1.1 Sensing using surface plasmons

e event that is monitored in time can be of two forms. (i) A new component is introduced in
the buffer and binds to the surface. In optical terms, this addedmass results in a change of refractive
index. (ii) A chemical reaction occurs near the surface that causes a change of refractive index.

e local change of refractive index will lead to a perturbation of the propagation constant
of the surface-plasmon mode that propagates along the interface. is perturbation is related to
the overlap of the modal eld with the perturbation of the refractive index pro le, it is therefore
desirable to obtain the highest possible eld con nement of the mode near the interface [4].

e change of propagation constant of the surface mode needs to be monitored by external
light. An incident beam couples to the surface mode, which in turn couples back to free-radiation
monitored by a detector. e efficiency of coupling light in and out of the bound surface mode is
an important issue to consider to optimise the efficiency of the sensor [3, 9, 11].

e perturbation of the propagation constant of the surface mode can be probed by light in
several ways. In general, three categories may be considered. (i) e intensity of the light is directly
monitored as a function of time. is is the situation of a planar Kretschmann geometry [18] where
the incident light of xed polarisation and xed angle of incidence couples to the surface plasmon.
A change of the dispersion of the surface-plasmon mode due to the perturbation of the local index
causes an alteration in the coupling of the light with the surface mode. (ii) e polarisation of the
incident light can be modulated, thereby affecting the coupling of the incident light to the surface-
plasmon. A crossed-analyser situated in the path of the collection optics can allow for an accurate
measure of the change of the polarisation state of the light that is re-radiated by the surface-plasmon
due to the perturbation of refractive index. (iii) Finally, the incident light can be from a broadband
source, and the dispersion of the surface-plasmonmode is monitored by a spectrometer during the
change of refractive index. Monitoring spectral changes is the approach discussed in this thesis.

e use of gold nanostructures in such applications is justi ed by the combination of two char-
acteristics [4]. (i) Gold is chemically inert and does not interfere with the biological samples. (ii)
e interface between gold and a surrounding dielectric medium can support surface-plasmon
modes, which are characterised by a strong con nement of the electromagnetic eld near the in-
terface. is eld con nement offers two advantages. First, the interaction between the probing
light and the medium of interest (analyte) is enhanced. Second, the localisation of the eld in
a sub-wavelength sampling volume makes it possible to distinguish between bulk refractive index
changes of the environment and local refractive index changes. e bulkmediummay be subject to
perturbative effects such as temperature or pressure uctuations. e effect of such environmental
sources of noise on the detection of surface events is reduced by con ning the electromagnetic eld
to the surface in a subwavelength sampling region [19–21].

e planar surface-plasmon geometry has been successfully used since the past two decades
to probe interfacial changes [22], and has now reached a detection sensitivity that is close to the
intrinsic limitations of the technique due to the environmental uctuations of the bulk refractive
index [23].

In an idealised experiment as depicted in gure 1.1, sensing a refractive index change requires
having a light beam incident on the active region of the sample, and a change in the output signal
corresponds to the presence of a given quantity of known material. e sensitivity can be unam-
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biguously de ned as the quantity of matter corresponding to the smallest change in signal one can
detect (above the noise level).

Several complications arise in a practical implementation. First, experiments take place in an
aqueous environment, where the change of refractive index of water due to thermal uctuations,
pressure, or pH variation lowers the detection limit. e dominant noise is the ultimate limitation:
thermal and pressure uctuations can be partially accounted for by using a reference channel.

euse of nanoparticles has beenproposed to replace the planar geometry [24, 25], as it provides
further spatial con nement of the surface-plasmon mode near the interface where the chemical
reactions are to be monitored, and is therefore more sensitive to the local index change and com-
paratively less sensitive to spurious bulk index change [10, 26].

Another source of noise in optical measurements arises when the light intensity is low. e
shot noise of the detector imposes constraints on the required signal level. For example, the size
and shape of nanoparticles may result in a trade-off between the sensitivity of the surface-plasmon
dispersion to a change of index, and the low signal intensity as observed in scattering [27]. e
measurement of reaction kinetics may further push the compromise between the intrinsic sensit-
ivity of the technique and the photon budget.

For a given active surface, planar techniques and particle plasmons have a very different sensing
volume as a result of their different characteristic decay length. A comparative study of the intrinsic
sensitivity and related merits of both techniques was recently given by the Van Duyne group [9].

In this thesis, I will present experiments that were performed on gold nanoparticles, either
isolated or arranged in a 2-dimensional array. ese experiments aim at a better understanding of
the optical properties of such gold nanostructures, which may provide a basis for the future design
of an optimised sensing nanostructure [10, 14, 28–30].

1.2 Optical response of gold nanoparticles: historical perspective

e study of planar surface-plasmons originates from the peculiar optical response ofmetallic grat-
ings observed by Wood in 1902 [31]. e work of Rayleigh [32] tentatively explained the observed
‘Wood’s anomalies’ in terms of a surface wave excited on the grating. e work of Fano [33] further
clari ed the existence and characteristics of this electromagnetic mode. e experimental obser-
vation and interpretation of surface-plasmons on planar surfaces was rst made by Ritchie [34]
in 1957, further discussed by Stern and Ferrell [35]. In those experiments, the charge density of
the metal was perturbed by an electron-beam. e energy spectrum of the electrons aer passing
through a metallic lm displayed characteristic absorption bands corresponding to the excitation
of the collective bulk and surface-plasmon modes. e optical excitation of surface-plasmons was
soon realised byTurbadar in 1959 [36],Otto [37], shortly followedbyKretschmann andRaether [18].

e study of the surface-plasmon modes supported by small gold nanoparticles can also be
traced back to the beginning of the 20th century. e works of Lorenz [38], Maxwell-Garnett [39],
Mie [40], and Debye [41] considered the mathematical problem of the interaction of light with
a metallic sphere. In particular, what is now known as the Mie theory was a (greatly) successful
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attempt at explaining the particular colouration of colloidal suspensions of sub-wavelengthmetallic
particles.

Interestingly, the same year Wood discovered the ‘anomalous’ band in the transmission of
metallic gratings he alsomade a pioneering observation on the scattering response of sub-wavelength
gold particles [42, 43],

“In the case of the gold lms, the particles are too small to be seen under the microscope,
with the facilities at my disposal; and I am inclined to the opinion that, in the case of
the sodium and potassium lms, particles which were actually seen with the microscope
were only the moderately large ones, and may not have been instrumental in producing
the colour. In continuing the work, I plan to make more exhaustive examinations with
the microscope, using higher powers if possible, employing photography, and ultra-violet
light if necessary, for I believe that only in this way can the nature of the resonator be
determined. ere will be no great difficulty in determining the dispersion, since the gold
lms are permanent, and can be examined with the interferometer, or they may easily

be given a prismatic form. I feel con dent that they will show anomalous dispersion, a
phenomenonwhich, if observed, would be almost proof positive that the absorption-band
was due to resonance.” — Wood, 1902.

e link between planar surface-plasmons and the electromagnetic response of gold nano-
particles is discussed at length in the monographs of Kreibig [44], and Bohren and Huffman [45].

Recently, the eld of plasmonics has seen a resurgence of interest with the work of Pendry [46].
e concept of metamaterials has emerged to describe arti cial structures that make use of a sub-
wavelength structure to tailor the electromagnetic properties of a material [1, 47].

e wide range of practical applications of plasmonics and metamaterials across the visible, IR,
THz, and micro-wave regimes has led to a large number of publications as illustrated in gure 1.2.
e data were collected manually from Web of Science using different key-words.

Both surface plasmons and particle plasmons have led to a rising number of publications in
the past decade, with an increasing growth of the number of publications. is trend has to be
compared to the more linear growth for a more generic keyword such as ‘optics’ to account for the
recent widespread of electronic referencing systems and the general increase of scienti c research.
e very recent eld of ‘plasmonics’ (data start in the past decade) is comparatively growing at a
much higher rate than optics, and this attraction is partly due to the emergence of a new range of
applications such as metamaterials [48].

1.3 Outline of this thesis

is thesis is organised as follows.
In chapter 2, a microscopic description of the optical response of matter to an electromagnetic

wave is reviewed, and leads to the Drude model expression that describes the optical properties of
gold in the visible and infra-red region. is description of the macroscopic dielectric function is
complemented by the derivation of the Lorentz-Lorenz formula that relates the refractive index of
a material to the polarisability of the atomic constituents. is derivation provides a direct link to

http://www.isiknowledge.com/
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Figure 1.2: Histogram of the publications reported inWeb of Knowledge (as of January, 12th, 2009)
corresponding to different keywords.

the emerging eld of metamaterials and to the more common effective medium theory. Surface-
plasmon polaritons are introduced in the context of the optical response of thin lms. e optical
excitation of surface-plasmons using theKretschman con guration is discussed, with a comparison
of the experimental data and modelling based on the Fresnel coefficients.

e description of surface-plasmons on planar surfaces leads to the introduction of localised
plasmons that are electromagnetic modes that can be supported by gold nanoparticles. Because
the shape and size of the particle strongly affects the distribution of the free surface charge on
the particle and its coupling to incident light, the modelling of the optical properties of gold nano-
particles requires a treatment in the framework of scattering theorywhich is introduced in chapter 3.
A review of the currentmodelling techniques available to describe the interaction of light with gold
nanoparticles is also given. e Mie theory provides an analytical solution for the scattering prob-
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lem by a spherical particle that is used to illustrate several general features of the interaction of light
with gold nanoparticles. A dipolar approximation with retardation corrections is introduced to de-
scribe the effect of a departure froma spherical shape to an elongated particle. Further, the T-matrix
formulation and the discrete dipole approximation are presented as techniques that provide an ac-
curate description of the scattering of light by particles of arbitrary shape. e interaction between
particles is considered in the simple form of a coupled dipole model that is used in chapters 5—8.

Experiments on isolated single gold nanoparticles are discussed in chapter 4. e fabrica-
tion technique of electron-beam lithography is described, and the optical characterisation of single
particles by dark- eld spectroscopy is presented. e experiments performed on single particles
aim at a better understanding of the in uence of the particle size and shape on its scattering proper-
ties. Gold nanorods of varying size and aspect ratio are studied and reveal a correlation between the
wavelength of excitation of a localised surface plasmon resonance and the geometry of the particle
in accordance with the modelling presented in chapter 3. Further, the LSPR linewidth is character-
ised by separating the contributions of the material intrinsic properties, the size-dependent effect
of surface scattering, and the radiative damping that affects large nanoparticles.

e interaction between closely packed particles is considered in chapter 5 where experiments
are performed on collections of gold nanoparticles. e fabrication technique of nanosphere litho-
graphy is presented that allows one to fabricate large domains of particles in an hexagonal pat-
tern. e arrays of particles are characterised by their extinction properties probed in bright eld
transmission spectroscopy. e effect of inhomogeneous broadening that affects the measurement
of the LSPR linewidth in collections of particles is assessed by experiments and a coupled dipole
model. Further, the interaction between particles is considered with arrays of different density
and con guration — from a regular square lattice to a random distribution of particles with con-
stant occupancy. e sensitivity of each con guration to a change in the bulk surrounding index
is investigated experimentally.

Another regime of inter-particle interactions is observed in chapter 6, where the particles are
placed on a regular array of periodicity commensurate with the excitation of the LSPR supported by
the nanoparticles. In this regime I demonstrate experimentally the evidence of a sharp spectral fea-
ture that results from an interplay between the LSPR and a geometric resonance associated with the
diffraction condition. e effect of introducing an asymmetry in the refractive index environment
of the particles is discussed, as experiments suggest the disappearance of the feature in asymmetric
con gurations. e observed spectral features are explained by a simple coupled dipole model that
reveals the main physical principles of the multiple scattering process in the plane of the particles.

In chapter 7 the in uence of the particle size and aspect ratio on the optical response of arrays
presenting such diffractive coupling is investigated. In particular, it is found that the integrated
extinction per particle veri es a sum rule that relates the static (zero frequency) response of the
scatterers to the integrated extinction over all frequencies. is veri cation is performed on the
data from several nanoparticle arrays of varying sizes and periodicities, and is complemented by
numerical simulations for gold ellipsoids.

e in uence of disorder on the diffractive coupling of gold nanoparticle arrays is studied in
chapter 8 where the periodicity is altered in two ways. First, the particles are displaced from their
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regular location by an increasing amount. It is seen that the sharp and intense spectral feature res-
ulting from the coherent multiple scattering in the plane of the particles is progressively weakened.
In the limit of uncorrelated positions, the extinction spectrum is the result of an inhomogeneously
broadened collection of non-interacting single particles. A coupled dipole model is used to in-
vestigate this effect numerically and the results con rm the experimental observation. Second, the
particles are placed on a regular array, with a distribution of particle sizes. Here the diffractive
coupling is observed, but the main resonance features associated with the excitation of LSPRs on
the particles is broadened and weakened by the distribution of localised resonances.
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“What traitors books can be! You think they’re backing you up,
and they turn on you. Others can use them, too, and there you
are, lost in the middle of the moor, in a great welter of nouns and
verbs and adjectives.”

Ray Bradbury 2
Background physics

G’     is undoubtedly linked to its lustre andparticular colouration. Other
noble metals such as silver share its high re ectivity that results from the interaction of light

with conduction electrons. e characteristic golden tint is however related to the interaction of
light with bound electrons — silver and aluminium for example exhibit a more neutral re ectiv-
ity in the visible owing to a plasma frequency situated further in the UV regime. Understanding
the optical properties of gold in the visible and infra-red therefore requires a description of the
free electrons response to light, and of an additional contribution from the bound electrons. e
rst part of this chapter is devoted to the description of the optical properties of dielectrics and

noble metals. e dielectric function is linked to a microscopic description of matter through the
formulation of the Lorentz-Lorenz equation and the more general statement of the Ewald-Oseen
theorem. Second, the optics of thin lms offer an introduction to surface plasmons as a particu-
lar electromagnetic mode that can be supported at metal/dielectric interfaces. e description of
particle plasmons is nally introduced and leads to the presentation of scattering by nanoparticles
that will be discussed in detail in chapter 3.

2.1 Electrodynamics of continuous media

As an incident wave impinges on a material, the electromagnetic eld exercises a force on the free
and bound charges which are displaced in addition to their random thermalmotion. ese charges,
in turn, re-radiate light in proportion to their acceleration. In a solid material, because the charges
are extremely close to each other, the light that is scattered contributes substantially to the local eld
experienced by the other charges. As a very large number of elementary charges is present even in
a nanometre-sized particle, a detailed treatment of the response of every elementary charges is not
attainable. e total eld at any instant in time is the sum of amultitude of partial waves emitted by
a dynamical system of coupled oscillators. When the wavelength ismuch larger than the separation
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2.1 Electrodynamics of continuous media

between atomswe can, instead, choose to solve the problem in terms of amacroscopic eld, treating
in effect the material as a continuous distribution of polarisation. is eld obeys the macroscopic
Maxwell equations that describe the optical properties of matter in a continuous distribution of
material large in comparison to inter-atomic distances [1].

2.1.1 The Maxwell equations

In this context, the scattering of light by nanoparticles, and optics in general can be accurately
treated in the framework of the macroscopic Maxwell equations [2],

∇ ·D =ρ (2.1a)

∇×E =−∂B
∂ t

(2.1b)

∇ ·B = 0 (2.1c)

∇×H =J + ∂ D
∂ t

, (2.1d)

whereD , E ,B ,H , are respectively the displacement eld, the electric eld, magnetic eld, induc-
tion eld. e current J and charge density ρ satisfy the charge conservation law,

∇ ·J =−∂ ρ
∂ t

. (2.2)

e charge density ρ comprises the external charge ρf that could be added to the bulk material
(it vanishes if the material is neutral), and a polarisation-induced charge ρpol that results from the
response of the material to an applied eld. A set of constitutive relations links the macroscopic
elds to the electromagnetic response of matter,

D = ϵ0E +P (2.3)

B =µ0 (H +M ) , (2.4)

where the polarisationP andmagnetisationM describe the reaction of thematerial to an external
electromagnetic eld and vanish in vacuum. e polarisation charge density is linked to the polar-
isation by∇·P =−ρpol. We will consider only the linear response of materials in this work, which
allows us to write,

P =χeE (2.5)

J =σE (2.6)

M =χmB , (2.7)
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2.1 Electrodynamics of continuous media

where the magnetic susceptibility χm is very close to zero for gold at optical and infra-red fre-
quencies, χe is the electric susceptibility, and σ the conductivity. Combining 2.3 and 2.7 yields
D = ϵ0ϵE , where we de ne the relative permittivity of the material as ϵ = 1+χe .

In most materials with non-zero conductivity, and metals in particular, the free charge density
ρf can be considered to be zero in most cases, as shown in the following derivation. We start with
the conservation of charge and equation 2.1,

∇· (σE) =−∂ ρf
∂ t

(2.8)

∇· (ϵE) =ρf. (2.9)

Equating∇·E from both equations yields an equation for the time evolution of the charge density,

∂ ρf
∂ t
+
σ

ϵ
ρf = 0, (2.10)

which has the solution,
ρf(t ) =ρf0 exp(−t /τ), (2.11)

where τ= ϵ/σ is the characteristic relaxation time for the a uctuation in the charge density to dif-
fuse in the bulk, which is much shorter than the light cycle of an incident wave at optical frequen-
cies. e relevant charge density entering the Maxwell equations in the case of metals is therefore
due to polarisation (the reaction of the material to an external perturbation). Adding an external
charge to a metallic particle will however modify the charge density [3], and therefore the plasma
frequency (see section 2.3.1).

Equations 2.1 form a local description of the average, macroscopic elds inside a continuous
distribution of matter. At the interface between two different media 1 and 2, with unit normal
vector n̂, the elds obey the following boundary conditions,

(D2−D1).n̂=ρs discontinuity yields a surface charge (2.12)

(E 2−E 1)× n̂= 0 continuity of the tangential component (2.13)

(H 2−H 1)× n̂=−J s discontinuity yields a surface current (2.14)

(B2−B1)× n̂= 0 continuity of the normal component. (2.15)

Because of the necessity for the elds to obey these boundary conditions at the interface between
different media, the shape of a scattering object imposes constraints on the possible solutions to the
Maxwell equations in all space. In fact, the electromagnetic response of an object can be completely
characterised by a set of electromagnetic eigenmodes (or normal modes) that can be supported by
the object that depend on its constitution (refractive index) and geometry. An incident wave, that
we will consider to be described as a plane wave (or, more generally, a combination of plane waves)
will excite a combination of thesemodes, with a particular weight that is proportional to the overlap
integral of the modal eld with a plane wave of that frequency and polarization state.
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2.1 Electrodynamics of continuous media

It is oen convenient to convert the Maxwell equations from the time domain to the frequency
domain by invoking a time-harmonic excitation in equations 2.1,

∇.[ϵE] = 0 (2.16a)

∇×E= iωµµ0H (2.16b)

∇.[µH] = 0 (2.16c)

∇×H=−iωϵϵ0E, (2.16d)

where the DC conductivity is included in the expression of the permittivity ϵ = ϵ0(1+χ)+ i σ
ω
. e

material parameters ϵ, µ and σ are complex quantities that depend on frequency, their arguments
express the eventual dephasing between the different eld quantities. In what follows we concen-
trate on non-magnetic, linear, and isotropic materials where we set µ = 1, and ϵ is a (complex)
scalar. e electromagnetic eld will be described in terms of the electric eld only — the Maxwell
equations 2.16 can be used to retrieve the magnetic component if necessary.

2.1.2 The wave equation

e set of differential equations 2.16 can be regarded as a description of the electromagnetic eld
in terms of its structure (divergence free) and its relation to sources (the two curl equations). By
taking the curl of equation 2.16b, we obtain the Helmholtz vector wave equation describing the
structure of the eld in homogeneous space [4, 5],

∇2E+k 2E= 0, (2.17)

where we de ne the wavenumber k = pϵµω/c , and c = pϵ0µ0 is the speed of light in vacuum.
e analogous time-domain equation describes the propagation of an electromagnetic wave at a
speed v = c

n where n =pϵµ is the refractive index of the medium.
e macroscopic response of the material to an electric eld can be characterised by either the

complex dielectric function ϵ = ϵ′+ iϵ′′ or alternatively the complex refractive index n = n ′+ i n ′′.
e real and imaginary parts of ϵ and n are linked by the following relations,

ϵ′ = n ′2−n ′′2 (2.18a)

ϵ′′ = 2n ′n ′′ (2.18b)

n ′ =

Èp
ϵ′2+ ϵ′′2− ϵ′

2
(2.18c)

n ′′ =

Èp
ϵ′2+ ϵ′′2+ ϵ′

2
. (2.18d)

It is oen convenient to use n in describing the propagation of a wave in a medium, n ′ is related to
the phase change and n ′′ to the attenuation of a wave during the propagation. e dielectric func-
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2.2 From microscopic to macroscopic optical properties

tion ϵ is used to describe the response of the material with respect to an applied electric eld. e
displacement eld is a measure of the effective eld experienced by a charge inside the material [6].
Plane wave solution

e simplest solution to theHelmholtz equation in unbounded, homogeneousmedia is a trans-
verse plane wave of the form E = E0 exp(i k · r− iωt ), where E0 is a vector of constant amplitude
characterising the polarisation of the wave, and k is the wavevector of modulus nω/c .

2.2 Frommicroscopic to macroscopic optical properties

e description of the electromagnetic response of a material to light may span three different
length-scales: (i) At the molecular level, the interaction of electrons and photons can be described
in a semi-classical picture of a harmonic oscillator characterised by a dipole moment. (ii) e
Maxwell equations of continuous media describe the average electromagnetic eld over a portion
of matter much larger than the inter-atomic distance. (iii) Agglomerates of nanoparticles may be
treated as an effective medium for the incident light provided their size and separation are relat-
ively small compared to the wavelength. is last level of averaging has led to the concept of meta-
materials: the electromagnetic characteristics of a material can be arti cially tuned by designing a
suitable combination of sub-wavelength components of different electromagnetic properties (see
for example [7] and references therein). At each of these three levels of observation, the Maxwell
equations are valid, but necessitate the introduction of an appropriate set of material parameters.
In this section I will discuss the link between the molecular, intrinsic properties of matter and the
macroscopic refractive index of a homogeneous medium. In chapter 3, a similar link will be dis-
cussed between the scattering properties of individual nanoparticles, and the material parameters
of an effective medium consisting of an agglomeration of such particles.

2.2.1 Microscopic origin of the refractive index

e refractive index of a material as described in the framework of the macroscopic Maxwell equa-
tions does not reveal the link to its microscopic origin. e phenomena of re ection and refraction
at an interface nd the simple mathematical interpretation of a boundary problem of matching the
elds at the interface between adjacent media. Yet, the microscopic, physical origin of the refract-

ive index is present in the macroscopic Maxwell equations, and results from the insertion of the
material response into the constitutive relation for J, P, and M. A more direct approach that aims
to describe the refractive index from basic principles of molecular optics was initiated by Lorentz,
Clausius and Mossotti [6], and given a formal and general description in the Ewald-Oseen extinc-
tion theorem [2]. is formulation provides a physical insight into the deceptively simple form of
the Fresnel formulas, and a rigourous derivation of the Lorentz-Lorenz formula that relates themo-
lecular material properties to the averaged dielectric function entering the constitutive relation 2.3.

2.2.1.1 The Ewald-Oseen theorem

e microscopic theory of polarisation can be rigourously treated in the form of the Ewald Oseen
extinction theorem [2, 8–12]. is theorem provides a physical insight into the origin of the laws
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2.2 From microscopic to macroscopic optical properties

of classical optics from a microscopic perspective. e laws of refraction, re ection, the Brewster
angle, the Lorentz-Lorenz formula can all be derived from this powerful approach [13]. It also plays
a central role in the null- eldmethod [14] which is a powerful formulation of the scattering of light
by arbitrarily shaped particles (see chapter 3). e derivation of the extinction theorem is rather
lengthy and purely mathematical (see [2] for a rigourous presentation) but its conclusion may be
readily summarised in physical terms. An electromagnetic wave incident on a material excites its
atoms which in turn re-radiate light; this re-radiation originates not only from the geometrical
boundary but from both adjacent media. e summation over all partial waves has two underlying
contributions: (i) the radiation of each molecular unit, and (ii) the in uence of a structure factor
that depends on the spatial arrangement of the material [12]. e net resulting eld vanishes in al-
most every direction due to the rapid variation of the relative phase between the different scattered
wavelets, except for three particular directions. ese three waves are the re ected wave, the re-
fracted wave whose phase velocity is altered from the incident wave, and a wave with velocity c

which exactly cancels the incident wave in the medium.
is result can also be understood by a purely macroscopic consideration, as shown in the

following derivation. For simplicity, the discussion is restricted to a wave impinging on an interface
between two semi-in nite, homogeneous media, at normal incidence. We consider the (arti cial)
division of the EM eld Etot inside a dielectric into two components: the incident wave, travelling
as it would in a vacuum at a speed c , Evac = exp(−i k0z ), and the wave created due to the response
of the material, Erad. By linearity of the Maxwell equations, each of these components satis es a
Helmholtz equation. Further, the total eld satis es the Helmholtz equation in the medium,

∇2Etot−k 2Etot = 0, (2.19)

where k = nk0. We can split equation 2.19 in the two eld components,

∇2Evac+∇2Erad−k 2Evac−k 2Erad = 0, (2.20)

and using the fact that Evac satis es the Helmholtz equation in a vacuum, we substitute ∇2Evac =

k 2
0 Evac. is leads to the following inhomogeneous equation, aer rearranging the terms,

∇2Erad−k 2Erad = (k 2−k 2
0 )Evac = k 2

0 (n −1)Evac, (2.21)

where the right hand side can be seen as a source for the radiated wave. e general solution to
equation 2.21 is the sum of a particular solution, Epart, and a general solution Ehom to the homo-
geneous equation for Erad. We rst note that Epart = −Evac is a solution to equation 2.21. Indeed,
we have, ∇2(−Evac) =−∇2Evac, k 2(−Evac) =−k 2Evac, hence:

∇2(−Evac)−k 2(−Evac)− (k 2−k 2
0 )Evac =−∇2Evac+k 2Evac−k 2Evac+k 2

0 Evac = 0. (2.22)

Physically, this solution corresponds to the exact cancellation of the incidentwave by the re-radiation
of the charges everywhere in the medium. A solution to the homogeneous equation can be found
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2.2 From microscopic to macroscopic optical properties

in the following trial function, Ehom = exp(i k z ), which physically represents the refracted wave
propagating in the medium at a speed c/n . e eld inside the material can therefore be expressed
as a sum of twowaves, one that extinguishes the incident wave everywhere in thematerial ; one that
propagates in the material with a modi ed velocity. Outside the medium, all waves propagate with
the same velocity c , and the re ected wave that arises from the re-radiation of the charges can be
found by the requirement tomatch the elds at the boundary: the net resultant eld in themedium
is the refracted wave, while the eld outside is the sum of two terms. Assuming an incident eld of
unit amplitude, two continuity equations at the boundary are required in order to obtain the ratio
of amplitudes between the re ected and refracted waves. One of these equations is the continuity
of the magnetic eld,

B1 =
B2

µ
.

For the electric eld, the continuity equation reads,

E1 = E2.

Moreover, from Faraday’s law of induction, we have in each medium, k×E= −ωB, i.e. B= ±n
c E

where the sign is taken positive for waves propagating in the direction of the incident eld and
negative for contra-propagating waves. For the total eld on each side of the interface, we therefore
obtain,

Evac−Erad =
nEtot
µ

.

the amplitude of the re ected wave satis es the following system of equations,Evac+Erad = Etot

Evac−Erad = Etot

Ç
ϵ

µ
.

e substitution n = pϵµ has been made in order to symmetrize the notations. We therefore
recognise the physical interpretation of the wave impedance as a measure of the ratio of amplitudes
on both sides of an interface,

Z =
Ç
µ

ϵ
.

with inverse the admittance Y = 1/Z . e re ection and transmission coefficients are now readily
expressed in terms of the admittance by solving the system,

r =
Erad
Evac

=
Y −1

Y +1
(2.23)

t =
Etot
Evac

=
2

1+Y
. (2.24)

ese formulas can be generalised to arbitrary incidence [2], and are given in equation 2.35.
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2.2 From microscopic to macroscopic optical properties

2.2.1.2 The Lorentz-Lorenz formula

is formula relating the microscopic polarizability of a material to its dielectric function can be
rigourously obtained from the Ewald-Oseen theorem, but a simpler heuristic derivation was ini-
tially proposed by Lorentz-Lorenz and is illustrated in gure 2.1. We consider a block of material
for which the optical response is characterised by a homogeneous dielectric function ϵ. e local
eld Eloc experienced by the atoms in the material is different from an applied external eld Eext

due to the polarisation of the material in response to this perturbation (a ‘screening effect’). e

dp

pi

(i)

(ii)

(iii)

Lorenz virtual cavity Field of a sphere with uniform polarisation

Eext

P

Eloc

θ

Figure 2.1: Derivation of the Lorentz-Lorenz formula with the aid of a virtual cavity.

atomic response of the material can be described by a molecular polarizability α, an intrinsic char-
acteristic of the material. Each ‘atom’, or volume element (the atom is foreign to the framework
of continuous electrodynamics) reacts to this local eld, that is the sum of the applied eld plus a
depolarisation eld that expresses the reaction of all the surrounding matter. To nd the depolar-
isation eld, we create an arti cial separation of space into two regions by introducing the virtual
Lorenz cavity centred about the location at which we wish to evaluate the effective eld. e atoms
present inside the cavity are assumed to be near neighbours of our region of interest. e contribu-
tion of these dipole elements vanishes for two particular con gurations of importance: (a) a cubic
lattice, (b) a random medium (e.g. a gas). is is because the dipolar eld has a particular sym-
metry and for each dipole in the cavity there is a combination of dipoles that leads to a cancellation
of the eld at the centre [6].

e contribution of the polarisedmaterial outside the Lorenz cavity is described as a continuous
distribution of polarised matter. It is equivalent to calculating the electric eld created by a sphere
with opposite homogeneous polarisation P ( gure 2.1, right). We can consider the contribution of
an in nitesimal volume element of dipole moment d p which is to be integrated over the volume
of the sphere, or alternatively consider the eld created by an equivalent surface charge. From
∇ ·P = −ρpol, a uniform polarisation is equivalent to a surface charge density σpol = −Pcosθ .
Because of the symmetry of the problem, it is sufficient to calculate the integral for the total eld
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over the polar angle θ according to Coulomb’s law,

E=
−1

4πϵ0

∫
sphere

σpol
cosθ

a 2 dS =
P

2ϵ0

∫ π
0

cos2θ sinθdθ =
P

3ϵ0
. (2.25)

is depolarisation eld is added to the applied eld Eext to de ne the local eld Eloc experienced
by the charges inside the material,

Eloc = Eext+
P

3ϵ0
. (2.26)

From the de nition of the dielectric function, we can write,

P= (ϵ−1)Eext, (2.27)

and we also know that the dipole moment p is linked to the polarisation by,

P=N p , (2.28)

where N is the volume density of the material. Combining equation 2.27 and equation 2.28 yields
the Lorentz-Lorenz formula,

α=
1

3N
· ϵ−1

ϵ+2
.

2.2.2 The Lorentz model for dielectrics

eresponse of a dielectricmaterial to light can be understood by a simple analogywith a harmonic
oscillator under the in uence of a sinusoidal excitation. Incident light in the form of a harmonic
wave causes the electrons of the material to move in response to the electromagnetic eld. e
deformation of the electron density around the ionic core of the atoms forms a dipole with two
opposite charges slightly displaced. e applied electric eld is varying in time, and as a result
the separation between the two centres of charges evolves at the same frequency. For elds with
sufficiently low intensity, the displacement is linear with the eld and the system behaves as a simple
harmonic oscillator where the restoring force is the coulomb attraction between the electron and
the ion core. Because of the proximity of neighbouring charges, there may be a frictional term in
the effective motion of the charges that describes the possible collisions between charges (electron-
electron, electron-defect, electron-phonon, etc.).

e equation of motion for an electron of mass m can be written [2, 15],

m
∂ 2r

∂ t 2 +mγ
∂ r

∂ t
+mβr =−e E0 exp(−iωt ), (2.29)

where the coefficient γ describes the damping mechanisms, β accounts for a restoring force due to
the coulomb interaction between the electron and the nucleus, and the right hand side is the force
imposed by the applied eld on an electron of charge −e .
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Figure 2.2: Displacement of an harmonic oscillator in the Lorentz model as a function of normal-
ised frequency.

Because the excitation is at a frequencyω we seek a solution at the same frequency in the form
r (t ) = r0 exp(−iωt ), for which equation 2.29 becomes,

r0 =
e E0/m

(ω2−β + iγω)
. (2.30)

We recognise
p
β as being a characteristic frequency notedω0 for which the displacement reaches

a maximum, only limited by the damping parameter γ. e real and imaginary part of the dis-
placement according to equation 2.30 are shown in gure 2.2 for several values of the damping
parameter. At low frequencies, the charges respond instantly to the perturbation, the displacement
follows the applied force (opposes the eld) without any phase lag. e amplitude of the oscillations
is identical for all damping parameters and is simply proportional to the amplitude of the applied
eld. As the frequency of the light rises, the inertia of the charges leads to a decreasing phase lag

between the displacement and the applied eld for each light cycle. Additionally, the amplitude of
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(a) Lorentz model of a dielectric (b) Drude model of a metal

Figure 2.3: Schematic dielectric function of a dielectric and a metal according to the Lorentz and
Drude models. e greyed zones correspond to negative values of the dielectric function where
waves cannot propagate in the medium.

the oscillations of the charges increases in magnitude and reaches a maximum when the excitation
frequency corresponds to the natural frequency of the free oscillator. e phase-lag is −90°, and
the transfer of energy to the oscillator is maximum: the work done on the charges per light cycle
is most efficient when the maximum eld occurs at the minimum velocity of the charged particle.
Atω=ω0, the harmonic oscillator is in resonance with the incident eld: the driving force excites
an eigen-frequency of the system, i.e. the natural frequency of oscillation which is the solution to
the source-free, homogeneous equation of motion. e quality factor Q =ω0/γmeasures the peak
intensity at resonance.

For frequencies higher than the resonant frequency of the oscillator, the phase lag increases and
tends toward 0° at large frequencies: the electrons cannot follow the force applied by the incident
eld. e work done by the eld on the charges and the amplitude of the oscillations tend towards

zero and the material become transparent to radiation for all values of the damping parameter.
e displacement of the charges corresponds to a microscopic dipole moment p = e 2r0. e

macroscopic average of themicroscopic dipolemoments is described by the polarisation P =N p =

ϵ0χE0, where N is the volumedensity of the electrons in thematerial andχ the susceptibility. Using
χ = ϵ−1 we obtain,

ϵ = 1− ω2
p

(ω2−ω2
0)+ iγω

, (2.31)

where we de ne the plasma frequency ωp =
p

N e 2/(mϵ0). Figure 2.3 presents the frequency de-
pendence of the dielectric function for dielectrics according to the Lorentz model of equation 2.31
(le panel). For comparison the right panel describes the dielectric function of metals according
to the Drude model as a limiting case whereω0→ 0.

eplasma frequency delimits the spectral region belowwhich electromagnetic cannot propag-
ate in the material [16]. A negative real part of the dielectric function implies that the material will
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prevent penetration of electromagnetic radiation, resulting in a strong re ectivity. Physically, the
polarization P = ϵ0χE is of opposite signwith respect to the incident eld so the scattered eld can-
cels out the incident eld inside the material. From equation 2.18, a large and negative value of ϵ′
corresponds to a large imaginary part of the refractive index. A small portion of the incident wave
may enter the bulk material as a decaying exponential, the skin depth effect, this eld is responsible
for absorption and does not propagate inside the material. e Maxwell equation ∇ ·D= 0 yields
two possible solutions: ∇·E= 0 which describes the possible existence of a transverse electromag-
netic mode in the material, or ϵ′ = 0 which is the condition for longitudinal, collective oscillations
of the charges in thematerial. A zero of the dielectric function therefore describes collective, longit-
udinal oscillations of the Fermi sea at the frequencyωp . ese oscillations de ne the bulk plasmon
resonance of the material [15, 16], which cannot be excited by light due to the transverse nature
of electromagnetic waves. A beam of electrons can however be used to probe this bulk mode of
the charge density, and led to the rst experimental observation of bulk and surface plasmons by
Ritchie [17]. Similar collective oscillations can occur at an interface, the frequency of these sur-
face plasmon modes is lower than ωp due to the additional depolarisation eld arising from the
accumulation of charges at the boundary. e surface plasmon dispersion and its relation to the
boundary of the material will be discussed in section 2.3.1.

2.2.3 Lorentz-Drude model

A metal is characterised by the presence of conduction electrons that move freely in the bulk ma-
terial. ese free charges will respond strongly to an applied EM eld, but in contrast to the Lorentz
model the restoring force is absent. e incident light may also excite bound electrons if the excit-
ation energy is sufficient, resulting in interband transitions.

e equation of motion for the free electrons in a conductor subject to an applied eld can be
written [18],

m
∂ 2r

∂ t 2 +mγ
∂ r

∂ t
=−e E0 exp(−iωt ), (2.32)

where the restoring force entering equation 2.29 has been removed. e damping parameter γ
expresses a frictional force arising from collisions between electrons and defects or phonons. is
frictional force is related to themean free path of the electrons, and can be expressed in terms of the
average time between collisions τ. e average change of velocity acquired by an electron aer a
number of collisions proportional to 1/τ (or, equivalently , the average over a number of electrons
at a given instant) reads,

d v̄

d t
= γv̄ , (2.33)

with γ = 1/τ de ned as the frequency of collisions. e average change of momentum m d v̄ /d t

is homogeneous to a force that is inversely proportional to the velocity of the charges and the time
between collisions. edamping of theDrudemodel is therefore ameasure of the inverse scattering
rate of the electrons moving in the crystal. γ is related to the mean free path leff of the electrons
inside the material by γ= νF /leff with νF the Fermi velocity.

considering the collisions as a Markov process, where the motion of charges is a random path with no memory of
the previous state aer each collision
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e dielectric function describing the response of the free electrons can be obtained directly
from equation 2.31 by settingω0→ 0 (vanishing restoring force),

ϵ = 1− ω2
p

ω2+ iγω
. (2.34)

A comparison of equation 2.34 and the experimental dielectric function of gold in the visible
is shown in gure 2.5. e values of ωp and γ for gold can be estimated from their de nitions
(~ωp = 8.95e V , ~γ = 65.8m e V ), however the in uence of the bound electrons leads to a poor
agreement. An alternative approach is considered here by treating ωp and γ as free phenomeno-
logical parameters that are retrieved from an optimization procedure using equation 2.34 and the
measured values for ϵ in the visible range. We note that the plasma frequency in the Drude model
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corresponds to the condition n ′ = n ′′ as expected from equation 2.18.
Because the free electrons are able to screen an incident electromagnetic eld very efficiently,

the elds cannot propagate inside the bulk metal. e bottom panel of gure 2.4 displays the re-
ectance and absorbance properties of gold in the visible, and of the Drude model for comparison.

e re ectivity is approaching 1 for the low-energy region of the visible and IR spectrum. e ab-
sorption manifests itself as a sharp edge on the high-energy regime (below 500 nm) for gold, while
the Drude model exhibits a similar behaviour at shorter wavelengths due to the different plasma
frequency.

Within the frequency range of negative ϵ′, the elds decay exponentially in a typical skin depth
of less than a wavelength. is spatial con nement is associated with the existence of an inhomo-
geneous evanescent wave at the surface which, when bound to the surface, yields an exponentially
decaying eld on the dielectric side of the interface. e spatial con nement of the elds in gold
structures is in fact a consequence of the strong attenuation of the elds by the surface charge that
screens the eld inside the material.

A goodmetal is sought tomake efficient radio-wave antennas because the efficiency of radiation
depends on the Joule loss due to the nite conductivity of thematerial. Similarly, gold at visible and
infra-red frequencies is able to support currents with much less Joule loss than copper for instance,
and is therefore a good plasmonic material.

When the displacement vanishes (E +P = 0), the only electromagnetic mode that can be sup-
ported by the bulk material is a longitudinal wave, the bulk plasmon. Similarly, the presence of an
interface allows the possibility of additional surface modes that depend on the depolarisation eld
created by the charges accumulating at the boundary. ese surface plasmon modes may be excited
by light under appropriate conditions (section 2.3.1).

A good agreement between a Drude model and the measured dielectric function can be ob-
tained in the wavelength range 0.65 µm–1.2 µm with an optimisation procedure considering the
constants γ and ωp as free parameters. e best t over this range of wavelength for both the
real and imaginary parts is shown in red in gure 2.5 with the parameters ωp = 1.36×1016 rad/s,
γ= 1.45×1014 rad/s. A large discrepancy is however observed in the high energy side of the visible
range and in the UV regime. e cause for this resides in the contribution of the bound electrons
that undergo interband transitions when the incident light has an energy corresponding to this gap.
e response of the bound electrons is not described in the Drudemodel. Two possible routes have
been envisaged in this thesis to obtain a more realistic model for the properties of gold used in the
calculations as illustrated in gure 2.5. (i) e experimental data from Johnson and Christy [19]
can be interpolated by a smooth curve (cubic spline) which can provide a good estimate of the
dielectric function at any given frequency in the range of interest. Unless explicitly stated other-
wise, I have used this approach in the calculations shown in this thesis. Although the experimental
values of the permittivity have the advantage of providing an accurate description of the dielectric
function, the Drudemodel employed above exposes some physical insight into the functional form
of the dispersion of the dielectric function that is missing from an ad hoc. interpolation procedure.
To remedy this, Etchegoin et al. [20] proposed an accurate analytical formulation for the optical
properties of gold that complements the Drude model with an adequate description of interband
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Figure 2.5: Dielectric function of gold, from Johnson and Christy [19] (points), a Drude model t,
and a spline t.

transitions e result of their approach is a model with several parameters that can be adjusted
through comparison to the experimental data by an optimization procedure. e best t result in
our range of interest is shown in blue in gure 2.5, and provides a remarkable good description
of the dielectric function of gold. e advantage of this approach is that dielectric function is de-
scribed in terms of a few parameters that have a physical interpretation. In particular, the damping
parameter from the Drude model can be modi ed to account for increased scattering rate in small
nanoparticles as I will discuss in chapter 4.

2.3 Optics of thin lms

Because the electromagnetic eld can penetrate only to a small distance in bulk gold, the design
of interesting plasmonic components relies on the use of sub-wavelength structures, where the
dimensions can be tuned tomodify the optical response of the bulkmaterial. e simplest example
of such a system is a subwavelength gold lm supported by a dielectric medium. I will discuss
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2.3 Optics of thin lms

in this section how the optical properties of thin lms of dielectric and metallic materials can be
understood from a generalisation of the Fresnel equations. Surface plasmon-polaritons will be
naturally introduced as a particular electromagnetic mode supported by such structures.

e boundary conditions for the electric and magnetic elds can be summarised in the Fresnel
coefficients that describe the re ection and transmission of electromagnetic waves at the interface
between two media. e waves may not be homogeneous — when the dielectric function is neg-
ative, or simply in the case of total internal re ection, the electromagnetic eld takes the form of
an evanescent wave on one or two sides of the interface. e Fresnel coefficients are still valid, but
involve complex angles that have a less intuitive physical interpretation. A convenient formulation
of the Fresnel coefficients uses the in-plane wave-number on both sides of the interface as the in-
variant of propagation. For a single interface from 1 to 2 with normal along the z direction, the
Fresnel coefficients read [2, 18],

r
p
01 =

ϵ2kz 1− ϵ1kz 2

ϵ2kz 1+ ϵ1kz 2
, r s

01 =
µ2kz 1−µ1kz 2

µ2kz 1+µ1kz 2

t
p
01 =

2ϵ2kz 1

ϵ2kz 1+ ϵ1kz 2

Ç
µ2ϵ1

µ1ϵ2
, t s

01 =
2µ2kz 1

µ2kz 1+µ1kz 2
.

(2.35)

Note that,
ri j =−rj i , (2.36)

and, for either polarisation,
t i j t j i = 1− (ri j )2. (2.37)

From the discussion of the Ewald-Oseen theorem, we understand the Fresnel coefficients to
express the response of the bulk material to an incident wave, even though they appear to relate the
elds only at the boundary between twomedia. e refracted wave and re ected wave are the result

of a coherent response of the material in the depth of the sample. A straight-forward veri cation of
this is obvious in the optical response of thin lms. Amulti-layered structure as shown in gure 2.3
will generally modify the re ection that would be expected for the rst interface alone (between
two semi-in nite media). In fact, the re ection and transmission can be modulated from 0 to 1 by
tuning the underlying structure. If the material participating to the generation of the re ected and
transmitted waves has a thickness commensurate with half the wavelength inside the medium, the
net effect of the structure on the incident light can be a constructive or destructive interference.
Further, a multi-layered structure with a periodic repetition of the index variation will result in
a modulation of the effective re ectance and transmittance with a direct correspondence to the
spatial frequency [21]. is is the basis of the fabrication of anti-re ection coatings (also known as
Bragg stacks) widely used in optics. In the next section I will discuss the optical properties of such
structures, with a particular attention to subwavelength, metallic lms.
Re ectivity of a layer

From the viewpoint of ray optics, a thin layer will support an in nite number of internal re-
ections (absorption and irregularities will however reduce the intensity in a physical situation).

e in nite series of re ected orders can be expressed in the form a geometric sum, leading to a
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2.3 Optics of thin lms

closed form formula as shown below. An incident plane wave with amplitude A impinges on the

0
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2

3

N

N+1

A B C D …

…

Figure 2.6: Schematic of re ection and transmission by a multilayer slab. A few re ected orders
are noted ‘A’, ‘B’, ‘C’ and ‘D’ for the rst interface.

rst interface. It can be re ected, B = r01A , or transmitted. e total response of the slab can be
obtained by following each order of re ection inside the slab (‘C’, ‘D’, …).

Upon transmission, the wave amplitude is t01A . Application of Fermat’s principle yields a phase
change∆ϕ = kz 1d when the wave hits the second interface. e re ection coefficient at this inter-
face is r12. epartial wave re ected from this path, noted ‘C’, is thereforeC = t10t01r12 exp(2i kz 1d )A .

Similarly, in ‘D’,
D = t10t01r10r 2

12 exp(4i kz 1d )A.

And, for the j th partial wave,
t10t01r j

12r j−1
10 exp(2i j kz 1d )A.
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2.3 Optics of thin lms

e wave re ected by the slab is the sum of these contributions,

rslabA = B +C +D + · · ·=
r01+ t10t01r12

∞∑
j=0

r
j
12r

j
10 exp(2j i kz 1d )

A.

For clarity, I introduce β = r12r10 exp(2i kz 1d ). e summation of all partial waves is thereby ex-
pressed as a geometrical sum,

rslab = r01+
�

t10t01r12 exp(2i kz 1d )
� ∞∑

j=0

β j .

Recalling that the sum of a geometric series of common ratio q is 1
1−q , we can write,

rslab = r01+
t10t01r12 exp(2i kz 1d )
1+ r12r10 exp(2i kz 1d )

.

Using the relation 2.37 and the substitution r10 =−r01 we nally obtain,

rslab =
r01+ r12 exp(2i kz 1d )

1+ r01r12 exp(2i kz 1d )
. (2.38)

For the transmission, one obtains,

tslab =
t01t12 exp(i kz 1d )

1+ r01r12 exp(2i kz 1d )
. (2.39)

When N layers are stacked together, the re ection coefficient of the structure can be found by
applying recursively the preceding formula for a single layer. is amounts to considering one of
the re ection coefficients to be the effective re ection accounting for all the layers behind.

e optical response of a subwavelength gold lm is presented in gure 2.7 for measured val-
ues of the gold dielectric function, and for a best- t Drude model (equation 2.34). In contrast to
gure 2.4, the transmittance is non-zero even though the dielectric function of gold is negative

over this frequency range. is is because the very thin layer of metal cannot completely screen
the incident eld, which acts as a tunnel barrier for the incident light [22]. e transmittance peaks
at around 500 nm — thin gold lms appear blue in transmission, and the intensity of this peak
decreases as a function of lm thickness. e absorbance and re ectance of gold are only mildly
modi ed by the thickness (ignoring the change in dielectric function for very thin lms below
10 nm typically). e Drude model however exhibits a strongly oscillating spectrum in the near-
UV regime, with a frequency of beats that increases with lm thickness. ese (here arti cial)
modes are a result of the multiple interference of the light inside the lm that forms a Fabry-Perot
etalon. Because the dielectric function of our Drude model is almost purely real and positive in
this region, little loss occurs that would dramatically damp the beating between multiple orders of
re ections.
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Figure 2.7: Modelled re ectance, transmittance and absorbance of a thin lm for several lm thick-
nesses (20 nm, 40 nm, 100 nm) for gold and a Drude model tted to the data in the visible (para-
metersωp = 1.34×1016 rad/s, γ= 1.12×1014 rad/s, ϵ = 8.1).

2.3.1 Surface plasmons

e interface between a dielectric and a metal introduces an abrupt change of the polarisation that
may lead to a con nement of the charge density associated with a surface electromagnetic mode
known as surface plasmon. e coupling between an electromagnetic eld and the collective os-
cillation of the charge density forms a surface plasmon-polariton. is particular electromagnetic
mode arises at the zero of the complex re ectivity (equation 2.35),

ϵ2kz 1− ϵ1kz 2 = 0. (2.40)
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2.3 Optics of thin lms

At the interface between two dielectrics, this condition describes the Brewster angle, where p-
polarised light is not re ected at the interface. With ametal of negative permittivity on one side, the
condition of equation 2.40 occurs for a complex wave-number (or complex angle), which means
that no free incident light can directly couple to this surface mode. e conservation of the total
wavenumber across the interface reads,

k 2∥ +k 2
z = ϵk 2. (2.41)

is equation combinedwith equation 2.40 provides the dispersion relation for the surface plasmon
polariton,

k = k0

Ç
ϵmϵd

ϵm + ϵd
. (2.42)

Because of the opposite sign of the dielectric functions ϵm < 0 (metal) and ϵd > 0 (dielectric), free
charges are trapped at the interface ( gure 2.8) [23], and the normal component of the wave-vector
is purely imaginary. e solution to equation 2.40 is therefore a true surface mode [18].

dielectric

metal

x Ez

zz

 + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - 

Figure 2.8: Schematic representation of SPPs at a metal dielectric interface.

A schematic of this dispersion relation is plotted in gure 2.9. e low-energy part of the curve
lies very close to the light lineω= k0c that describes a grazing photon, uncoupled to the material.
As the in-plane wave-number increases (optical regime), the dispersion of the SPP departs from
uncoupled photons — the polariton character of the mode becomes clearer as the interaction with
thematerial augments. Because of the high index contrast at long wavelengths only a small portion
of the eld can penetrate the metal, while at optical wavelengths the index mismatch decreases and
allows for a larger penetration in the metal. Surface plasmon-polaritons are characterised by an
exponential decay of the eld away from the interface,

Ez ∼ exp(i kz z ). (2.43)

where kz stands for the (purely imaginary) component of the wavevector in the medium (metal or
dielectric).
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Figure 2.9: Dispersion of planar SPPs at ametal / dielectric interface. e dashed red line represents
the light line (free propagating light at grazing incidence). e grey curve is the dispersion of the
surfacemode. e grey scale (black to white) indicates the imaginary part of the SPPwave-number
(dark represents a purely real wave-number, white indicates strong damping in the propagation).
e dashed blue line indicates the asymptote to the Brewster mode (upper branch of the dispersion
curve).

Figure 2.8 depicts the character of the surface plasmon polariton at the interface between a
metal and a dielectric. A collective oscillation of the charges trapped at the interface is associated
with an electromagnetic mode con ned to the interface.

In gure 2.9 the SPP never crosses the light-line, it is therefore impossible for free-propagating
light to couple directly with SPPs. e momentum mismatch can be overcome by the use of prism
coupling (discussed below), grating coupling, or scattering coupling [24].e asymptotic limitω

corresponds to a standingwave— the dispersion of themode attens at high in-planewavenumber,
indicating a low group velocity.

SPPs can propagate along the interface, the decay length characterising their decay along the
interface is related to the imaginary part of the in-plane wave-vector that arises from the imaginary
part of the dielectric function of themetal (Joule heating) and the radiative damping due to possible
out-coupling to free space radiation.

An experimental scheme was proposed by Kretschmann to allow for optical excitation of the
surface plasmonpolariton on thinmetallic lms, and is described in gure 2.10. ephysicalmech-
anism describing the excitation of surface plasmons on a thin metallic lm is well understood, as
detailed in the monograph of Raether [24], but the physical explanation can be subtle [25]. A de-
ceptively simple and rigourous description of the optical response of the system can be done using
the Fresnel coefficients, as shown above. It is however rather difficult to extract the physical mean-
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(a) (b)

Figure 2.10: Excitation of SPPs at a metal dielectric interface using the Kretschmann con guration.

ing of the surface plasmon polariton solution from this formulation — it is a pole in the re ectance
of the system that describes the existence of electromagnetic eigenmodes of the system. In physical
terms, the excitation of SPPs by the incident light will occur when the in-plane momentum of the
light inside the prism matches the momentum of the SPP mode of the same energy,

n . sinθint =
Ç
ϵmϵd

ϵm + ϵd
. (2.44)

e incident light is converted into the surface mode when the conservation of energy and mo-
mentum are both satis ed. e coupling condition in the Kretschmann geometry is perturbed
from equation 2.44 as the dispersion of the mode is modi ed by the presence of the second in-
terface of the thin metallic lm. In gure 2.11 the calculated re ectivity of a 50 nm gold lm on
a prism, using the recursive Fresnel coefficients presented above. e dispersion of the surface
plasmon mode calculated from equation 2.42 using the permittivity from Johnson and Christy is
displayed as a dotted line, and follows a marked minimum in the re ectivity of the system corres-
ponding to the excitation of the surface plasmon by the incident light. e light-line (dashed-red
line) is also visible as a maximum of re ectivity. In the high frequency regime (wavelengths be-
low 500 nm) the re ectivity uniformly drops and the plasmonic feature disappears: the presence of
interband transitions leads to a large absorption, and a large damping of the SPP.

e drop in re ectivity at the condition of excitation of the SPPs can be understood by the
following argument. e incident light gains momentum inside the prism (k = nk0). e re ected
light that is detected outside the prism can come from two re ection channels,

1. Upon total internal re ection (for angles above the critical edge), part of the incident light is
re ected at the metal/prism interface

2. As in frustrated total internal re ection, there is a probability that the incident light couples to
the surface plasmon polariton on the other side of the thin metallic lm. e light converted
into this surface mode can decay in two forms: non-radiative (Joule heating of the lm), or
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Figure 2.11: Calculated dispersion of the re ectivity of a thin gold lm (permittivity from Johnson
and Christy). e dark regions correspond to low re ectivity (black is 0, white is 1). e blue
dashed line is the light-line in the surrounding medium. e green curve is the solution to the
dispersion relation 2.44 for a semi-in nite gold lm.

radiative. It is clear that if the light inside the prism had a momentum commensurate with
the SPPmode, the reverse conversion fromSPP to light can occur: the surface plasmonmode
re-radiates light in the prism.

It is the interference of these two channels that is measured by the detector (therefore, their relative
phase and amplitude matter). When the thickness of the lm is such that the radiative and non-
radiative losses are equal, 100% absorption can occur. e energy is then completely converted
into heat inside the lm. e existence of an optimum thickness stems from the balance of two
opposite constraints: a thick lm will allow very little overlap between the incident eld and the
SPP mode; a lm too thin will see a higher amplitude of the second channel (SPP over-damped,
re-radiating light). Figure 2.12 presents the experimental observation of the surface plasmon po-
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lariton in a Kretschmann geometry using a silver lm at a wavelength of 632.8 nm. is angle scan
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Figure 2.12: Excitation of SPPs at a metal dielectric interface using the Kretschmann con guration
(60° silica prism n = 1.46, λ= 632.8nm). e tted parameters for this silver lm are ϵ =−11.9+
1.3i , thickness 45.3 nm.

corresponds to a horizontal cross-section of the dispersion diagram of gure 2.9 (constant energy).
When the incident angle in the prism is larger than the critical angle for total internal re ection, the
re ectivity of the silver lm increases to unity (the scaling of the experimental data comes from the
re ectivity at the interface air/prism). At the angle where equation 2.44 is satis ed, the re ectivity
drops sharply as the incident light is converted into the surface plasmon mode. e width of this
mode is related to the radiative and non-radiative decay routes for the surface plasmon. An op-
timization routine based on the use of the recursive Fresnel coefficients can be used to extract the
parameters of the lm, namely the lm thickness and the complex permittivity. e best- t result
is shown in gure 2.12, in very good agreement with the data.
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2.4 Nanoparticles

2.4 Nanoparticles

Surface plasmons were introduced in the preceding section as a solution for the Maxwell equations
when the presence of an interface adds a restoring force acting on the free electrons of a metal [26,
27]. e depolarisation eld resulting from the accumulation of charges at the boundary between
the metal and a dielectric will therefore be modi ed if a curvature is introduced. e in uence of
the curvature on the surface charge is the gist of the link between planar surface plasmon polaritons
and the particle plasmons that are at the centre of the work presented in this thesis.

By changing the dimensionality of the system (from a 2-dimensional, in nite interface to a
3-dimensional scatterer), the charge is now subject to a different constraint that is tied with the
shape and size of the particle. In particular, the depolarisation eld is linked to the shape of the
particle — the precise expression will be treated in chapter 3. Instead of searching for a pole in the
re ectance—a concept thatwas applicable to an in nite surface but not to a subwavelength particle,
the localised plasmon resonance occurs at a pole in the polarizability of the scatterer (equation 3.25)
with an appropriate factor accounting for the in uence of the shape. A very elegant illustration of
the nature of the modes supported by the charge density con ned in a nanoparticle was discussed
by Hohenester et. al. [28]. ey considered the equation of motion for the charge density when

(a) Spheres (b) Cubes

Figure 2.13: Illustration of the normal modes adopted by the charge density on spherical and cubic
nanoparticles. (From [28], reprinted with permission).

constrained by the boundary of a nanoparticle much smaller than the wavelength of the incident
light. In this approximation, the charge density is found to obey a quantization constraint in the
form of a discrete set of eigenmodes: the charge density adopts a con guration around the particle
that depends on the shape and size of the particle. An incident electromagnetic wave will excite
a combination of these modes that in turn re-radiate resonantly in the visible, leading to a strong
scattering and absorption of such particle-plasmon supporting particles.

A direct experimental observation of such oscillations of the charge density in nanometre sized
particles was recently achieved in a comparison between experiment and theory byAbajo et al. [29].
Figure 2.14 (reprinted with permission) is a map of the energy loss from an electron-beam passing

33



2.5 Conclusion

near a gold nanoparticle. e electron-beam has a very narrow width that provides the extremely
high resolution required to image the elds beyond the realm of conventional optics. e energy
loss of the electron beam is found to coincide with the probability of excitation of a localised surface
plasmon mode in the particles. is is similar to the early experiments of Ritchie [17] who rst
discovered the bulk and surface plasmon on a planar geometry by analysing the energy loss of
electrons passing through a sample. Here, the 2-d map of the particle is obtained by a raster scan
of the plane with the ne electron beam.

Figure 2.14: Direct observation of the particle plasmonmodes supported by a nanoprism. Top: nu-
merical modelling of the modes supported by the nanoparticle at three different energies. Bottom:
map of the electron loss aer numerical deconvolution. (From [29], reprinted with permission).

2.5 Conclusion

In this chapter were presented the basic concepts that are required to study the particular optical
properties of gold. Two approaches were discussed: (a) the electrodynamics of continuous media
as described by theMaxwell equations complemented by a set of ad hoc constituents relations for P,
and J. (b) e microscopic origin of the polarisation of matter as described in the Drude-Lorentz
model. e link between the two viewpoints was discussed in relation to the extinction theorem
and the derivation of the Clausius-Mossotti equation.

eoptical properties of bulk gold can be described by a dielectric function that can be obtained
experimentally, or approximated using a Drudemodel for the response of the free conduction elec-
trons to an applied electromagnetic eld. Several possible prescriptions for the dielectric function
of gold have been discussed, and their repercussion on the re ection and absorption properties of
gold have been shown for the visible range.
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e dielectric function for gold is negative at optical frequencies, which allows the existence
of a bound surface wave at the interface between a gold sample and a surrounding dielectric. e
electromagnetic mode supported by such a structure is known as a surface plasmon-polariton. e
properties of the SPP were described for the Kretschmann con guration by using a model for the
optical properties of thin lms based on the use of generalised Fresnel coefficients. e conditions
for a coupling of incident radiation to a surface plasmonwere discussed in relation to the dispersion
relation for SPPs at a planar interface.

e particle plasmons which are the object of this thesis were introduced as the result of the
spatial con nement of the charge density when the interface between the metal supporting a sur-
face plasmon mode and the surrounding medium takes the form of a particle smaller than the
wavelength of the incident light. e geometrical shape of the particle dictates the possible con-
formation of the excitation of the surface charge density, and these patterns were illustrated by
recent theoretical and experimental studies from the literature.

Bulk gold presents a strong interaction with light due to the response of the free electrons that
can screen an incident electromagnetic wave. e dielectric function of any material obeys general
sum rules that describe the integrated response over all frequencies as a characteristic of the mater-
ial (quantum oscillator strength) and not of the particular arrangement of the atoms. By tailoring
the geometry of the sample from bulk to a thin lm or to a particle of a given shape, the electromag-
netic response of the charge density can be restricted to a narrower range of resonance frequencies,
for which the interaction with light is therefore intense, even for very small particles.

For particles that are smaller than the wavelength, the concept of re ection, absorption and
transmission at a planar interface are of little practical use. It is therefore necessary to describe the
optical response of nanoparticles to light within the more general framework of scattering theory,
and this will be the subject of the next chapter.
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“Chemin : bande de terre sur laquelle on marche à pied. La route
se distingue du chemin non seulement parce qu’on la parcourt en
voiture, mais en ce qu’elle est une simple ligne reliant un point à
un autre. La route n’a par elle-même aucun sens ; seuls en ont un
les deux points qu’elle relie. Le chemin est un hommage à l’espace.
Chaque tronçon du chemin est en lui-même doté d’un sens et nous
invite à la halte.”

Milan Kundera
3

Modelling techniques

T      bymetallic particles has a long history that re-
ects a more general interest in light scattering. e original works of Lorenz [1], Maxwell-

Garnett [2], Debye [3] and Mie [4] at the beginning of last century are generally regarded as pi-
oneering the eld. e seminal paper of Mie [4] in 1908 explained rigourously the intense red
colouration observed in colloidal solutions of gold particles, and this understanding was achieved
through a very general solution of the Maxwell equations for a sphere of arbitrary size illuminated
by a plane wave. e Mie theory has since been extended and reformulated, and is a cornerstone of
the study of light scattering [5, 6]. e monograph of van de Hulst [7] on light scattering by small
particles stands as a reference amongst physics books, and a comprehensive historical review of the
eld.

From a different perspective — and indeed a vastly different frequency range, the electrical
engineering community working on the design of antennas developed powerful methods to in-
vestigate the emission and scattering of microwave radiation by metallic structures in different
con gurations.

e scattering problem can be stated as follows: given the knowledge of an incident eld from a
distant source, and a scattering medium characterised by a spatial distribution of refractive index,
what is the resulting electromagnetic eld distribution in all space? Clearly, this broad de nition
embraces the whole area of optics. In fact, scattering theory can be considered the foundation of
classical optics, as presented in the classic monographs of Stratton [8] and Born and Wolf [9]. e
understanding of light scattering by subwavelengthmetallic particles therefore gains from the larger
interest in scattering theory in areas such as climate research, remote sensing, and astronomy. In
fact, the foundations ofmost of the numerical models discussed in this chapter originated from dif-
ferent elds of interest and were later applied to the case of metallic nanoparticles. A good example
of this transfer is the Discrete Dipole Approximation developed by Purcell and Pennypacker [10]
to study the extinction of light in interstellar dust clouds.
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Similarly, the scattering of light by periodic structures bene ts from the comprehensive set of
tools developed in the eld of solid state physics. An example of this is the KKR (Korringa Kohn
Rostoker)methodwhich originated in the study of electronic properties of solids and is nowwidely
applied to the study of dielectric andmetallic photonic crystals [11–14].Newton [15] gives a general
presentation of scattering that allows for a similar treatment of electrons and photons in a quantum
mechanical framework.

Although scattering of light by particles has been a eld of active research interest for over
a century, it is only in the past few decades that a quantitative comparison between experiments
and theory has been feasible for nanoscale particles [16, 17]. It has only been possible to implement
powerful numerical techniques with the advance and widespread use of fast computers. In parallel,
fabrication and characterisation techniques have also considerably improved in the past decades,
allowing for a quantitative veri cation of the theories by experiment. It is worth noticing the fact
that while this eld has been extensively studied theoretically, and numerous numerical codes can
be used to model the optical properties in a variety of situations, the very existence of many mod-
elling approaches indicates that no single technique is ideal for all cases. It is therefore our task to
ask the following questions when choosing a particular approach: i) What is the information we
would like to obtain from modelling? is requirement can go further than the straight-forward
objective of reproducing the experimental result — in many cases some eld quantities calculated
by the theory may not be accessible in the experiment but can help our physical understanding.
ii) What are the different approaches, and more importantly which approaches are best suited for
a particular type of problem? iii) What approximations can be made to reveal enough physical
insight without losing too much accuracy?

e rst part of this chapter is devoted to presenting the general equations of scattering theory
and to giving an overview of the techniques used in this thesis. e exactMie solution for scattering
by spheres of arbitrary size is discussed, with an emphasis on the limiting case of Rayleigh-Gans
approximation applicable to small particles. Finally, possible techniques to treat the scattering of
light by a large collection of particles are discussed.

3.1 Context

Scattering of light by particles and systems of particles is reviewed in comprehensive monographs
such as Kahnert [18], Mishchenko [5, 19], Barber [20] and Newton [15] to cite only a few major
references. For the particular problem of modelling the optical properties of gold nanoparticles
in the visible and infra-red Schatz [17, 21–23] and García de Abajo [16] recently gave reviews on
the most commonly used techniques. e strong optical response of gold in this frequency range
imposes particular constraints on the numerical scheme (large complex and dispersive permittivity,
arbitrary shape). I will discuss in this chapter only a few of the techniques that adequately describe
the optical response of metallic nanoparticles in the visible with moderate size to wavelength ratio.
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3.1.1 General formulation of the scattering problem

e typical scattering problem can be summarised as follows: nd the total eld in all space that
satis es the Helmholtz equation (equivalently, the Maxwell equations) in the different constituents
(for simplicity I note 1 for exterior, 2 for interior),∇2E1+k 2

1 E1 = 0,

∇2E2+k 2
2 E2 = 0

, (3.1)

with k1 = n 1k0, k2 = n 2k0 the wavevector in each medium. ese two homogeneous equations
can be combined by introducing an arti cial current density J= k 2

1 [m
2−1]E, where m = n 1/n 2 is

the ratio of refractive index,

∇2E+k 2
1 E=

0 in medium 1

J in medium 2
. (3.2)

In this inhomogeneous equation, the current J (therefore, the index contrast) is seen as the source
of the scattered eld: the associated homogeneous equation describes the propagation of a wave in
the unbounded, source-free medium 1, which is our de nition of the incident eld.

e set of the Maxwell equations 2.16 or equation 3.2 is used directly in several modelling
techniques, e.g. theMie theory, the separation of variablesmethod (SVM), and in a discretized form
in the nite elements method (FEM) and the nite differences in time domain method (FDTD).
An alternative route [18] is based on casting the set of partial differential equations into an integral
formulation, this forms the basis of the discrete dipole approximation (DDA) andNull-Fieldmethod
discussed in sections 3.4.1 and 3.4.2.

3.1.2 Boundary conditions

Equation 3.2 assumes a particularly simple formwhen all the characteristic dimensions of the prob-
lem are much smaller than the wavelength in the incident medium — the scattering problem re-
duces to nding a quasi-static electric eld distribution in the vicinity of the particle. In this case
we retrieve the source-free Laplace equation ∇2E= 0 whose solutions are the well-studied class of
harmonic functions. e geometry of the system alone dictates the form of the electromagnetic
eld everywhere in space. e presence of the wave-vector in equation 3.2 introduces retardation

effects: the electromagnetic eld has the additional characteristic of having a phase varying in space.
An additional constraint on the electromagnetic eld is provided by the so-called radiation con-

ditionwhich dictates that the eldmust decay away at large distance from the sources as a transverse
spherical wave with amplitude inversely proportional to the distance. is condition ensures that
energy is conserved, as the energy ux radiated per solid angle is constant. In the time domain, this
condition describes the formation of out-going spherical waves in regions sufficiently far away that
the scatterer can be considered a point-like source of radiation. Symmetrically, it also describes the
possibility of in-going spherical waves converging to a point.
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e distance at which the electromagnetic eld is ‘free’ from its source and propagates in the
form of a transverse spherical wave depends on the wavelength and size of the source as well as
its constitution. e transition from a near- eld zone to a far- eld zone and its dependence on the
different parameters is discussed by Mishchenko [24] and Wolf [25].

Figure 3.1 depicts the scattering process as treated in this chapter. e total electromagnetic
eld in all space can be arti cially separated into two contributions: the external eld that would

exist everywhere in space if the particles were not present (in this case, simply a plane wave); the
scattered eld that is the difference between the incident and total elds. It should be noted that in
the frequency domain, no causality relation can be expressed between the incident and scattered
elds and it is not adequate to describe the scattering process as a chronological series of inter-

actions in this framework [19, 26]. When considering scattering by a cluster of particles the eld
scattered by one particle can affect its neighbours. Such interactions can strongly affect the re-
sponse of the individual components as will be discussed in section 3.5 on multiple scattering and
in chapters 5–8. At large distances from the scattering medium, all scattering bodies can be seen
as a point source of radiation and the scattered eld takes the asymptotic form of a spherical wave
as required by the radiation condition,

Escat ∼ exp(i k · r)
r

�
eϕϕ̂+ eθ θ̂

�
. (3.3)

e strength and angular pattern of the scattered eld is in uenced by the constitution of the
cluster, the incident polarisation and direction. For instance, for single particles much smaller
than the wavelength, the Rayleigh approximation treats the scatterer as point dipole which emits
symmetrically in a typical cos2θ radiation pattern (no radiation along the dipole axis, symmetric
pattern). Larger particles will exhibit a so-called Mie focussing effect: the forward scattering dom-
inates over the backscattered radiation. Very large particles can display the opposite behaviour: a
large metallic sphere appears as a mirror to visible light and back-scatters (re ects) a large propor-
tion of the incident light (there is also a substantial amount of highly directional forward scattered
light in the form of diffraction by the edges of the object). e scatterer can also take the form of a
collection of smaller particles, in which case both the individual particles scattering properties and
the geometrical conformation of the cluster will in uence the scattering properties in the near- and
far- eld.

A simpli ed hierarchy of scattering problems is shown in gure 3.2. e Maxwell equations
are the foundation of the classical theory of light scattering, and may be used directly or in their
discretized form to solve some speci c scattering problems (for example, with the FDTD method).
However, in many practical situations the complexity of the scattering problem — even within
this macroscopic framework, makes it difficult if not intractable to solve directly for the eld in all
space. For instance, a large cluster comprising thousands of particles of irregular shapes in arbitrary
con gurations is commonly encountered in experiments. e general problem of light scattering
by systems of particles can be divided into sub-categories as shown in gure 3.2. e rst division
may be the distinction between static and dynamic scatterers. In the latter, the scatteringmedium is
constantly evolving fromone con guration to another. Time averaged or transient optical response
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kinc, Einc

ksca, Esca

far-�eld zone

(intermediate zone)

near-�eld zone

Figure 3.1: Schematic representation of scattering by a cluster of particles. A plane wave character-
ised by its wavevector k and electric vector E excites the charges in the particles which generate a
scattered eld in response. e total eld is the superposition of the incident and re-radiated elds,
and may be divided in two (in some cases, three) zones: near- eld, (intermediate), and far- eld.

of such systems will not be investigated here, we will restrict the discussion to static con gurations.
e second distinction is between a single scattering particle and a disjoint collection of particles
in a cluster. e case of single particles will be discussed in relation to experiments in chapter 4.
Clusters of particles may vary in number, from a pair to an in nite number of particles. While
small clusters (up to a hundred particles) can be treated with direct methods, it is oen necessary to
introduce new simplifying assumptions when dealing with larger collections of particles. A notable
exception is the case of in nite periodic structures, where the problem may be solved for a unit
cell in a way that is very similar to the single particle case with appropriate periodic boundary
conditions in the Finite Element Method, Finite Difference Time Domain method, or Discrete
Dipole Approximation [27]. Another natural option for periodic structures is to expand the elds
in a series of Fourier harmonics, which forms the basis of the Fourier modal expansion method.

If the particles are widely separated and scatter light weakly, it is sometimes possible to neglect
the electromagnetic interaction between the particles, and the scattering properties of the medium
are found to re ect the average distribution of the individual scattering properties of the particles in
isolation. For dense media, however, this assumption is clearly invalid and a delicate task consists
in de ning the limit where multiple scattering becomes important [28].
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Maxwell equations

Static scatterer

Single particle Cluster

Small cluster Large cluster

Dynamic (random) object

Dilute medium Dense medium

Periodic system
Random 
arrangement

Figure 3.2: Simpli ed hierarchy of scattering systems. (Inspired from [19])

3.1.3 Volume integral formulation

e solution of equation 3.2 may be obtained formally using the formalism of Green’s functions. In
this approach, the solution is expressed as a convolution of the source with the response to a Dirac
distribution,

Escat = iωµ0

∫
V

dr′Ḡ(r, r′)J(r′), (3.4)
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where the integral is taken over the the volume V of the scattering body, and the Green’s dyadic Ḡ
satis es an associated equation with a unit source term,

(∇2+k2
1)Ḡ(r, r′) = Īδ(r− r′). (3.5)

e physical interpretation of the Green dyadic is the expression for the electric eld radiated at a
location r in space by three orthogonal dipoles located at r ′. It represents the propagator for the
electromagnetic eld in a quantum mechanical description of the scattering process. Introducing
new elements in the scattering problem, such as a substrate, can be elegantly achieved in this integ-
ral formulation through the introduction of an adequate Green function[29]. In free homogeneous
space, the Green’s dyadic takes the form [18, 30, 31],

Ḡ=
�
Ī+

1

k 2∇∇
�
G0, G0 =

e±i k |r−r ′|
|r − r ′| . (3.6)

is expression for the Green dyadic can be obtained using the scalar and vector potentials, or
using the alternative formalism of Hertz (polarisation) potentials. In a similar manner that one can
describe electromagnetic waves as solutions to the Helmholtz equation for the potentials ϕ and A

where charge and current densities are sources, one can derive a formalism where the sources are
the polarization (and magnetisation) [9, 32],

Π=

∫
volume

P(t − |r − r ′|/c )
|r − r ′| dr′ ⇔ A=

∫
volume

J(t − |r − r ′|/c )
|r − r ′| dr′

(∇2+k2
1)Π=−P ⇔ (∇2+k2

1)A=−J.

(3.7)

eHertz vector is parallel to the source of polarisation, and is transferred in the form of a spherical
wave which conserves this initial symmetry. e electric eld E(d) of a dipole is obtained by the
following formula,

E(d) =∇× (∇×Π) . (3.8)

e volume integral formulation is obtained by inserting equation 3.6 into equation 3.4, which ex-
presses the summation of the applied eld and the dipolar eld radiated by all unit dipole elements
inside the scatterer,

E= Eext+ iωµ0

∫
volume

�
Ī+

1

k 2∇∇
�
G0(r, r′) · J(r′)dr′. (3.9)

e volume integral equation 3.9 expresses the eld everywhere in space in terms of the incident
eld, provided the eld inside the scattering body is known. Discretizing this integral equation and

solving self consistently for the local eld at any point inside the particle is the basis of the discrete
dipole approximation, where the internal current sources are modelled as point dipoles located on
the discrete mesh.
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When the index contrast is small (so scatterer) and the particle is small compared to the
wavelength, this internal eld may be considered to be uniform and equal to the incident eld.
is so-called rst Born approximation forms the basis of the Rayleigh theory applicable to small
particles. A more accurate approach consists in carrying out this rst approximation, and then
iteratively replacing the corrected internal eld calculated from equation 3.9. is procedure is es-
pecially useful when the scattering body consists of several particles: the iteration reproduces the
interaction of the particles via partial waves in an order-of-scattering numerical scheme.

3.1.4 Null- eld equation

In equation 3.9 the internal current describes the polarization of the material in response to an
external eld. By applying Stokes’ theorem, the volume integral may be converted into a surface
integral over the particle boundary. e polarization can be expressed in terms of an equivalent
surface charge (from equation 2.16b), which forms an appealing picture for the scattering of light
by metallic particles where the excitation of eigenmodes for the surface charge density coincide
with the existence of localised plasmon modes. e surface integral formulation forms the basis of
the Null-Field method method discussed in sections 3.4.1 and 3.4.2.

Einc+

∫
∂ V

�
iωµ

c
(n̂×H) · Ḡ+(n̂×E) · (∇× Ḡ)

�
dσ(r ′) =

E outside

0 inside
. (3.10)

Equation 3.10 is an expression of the Ewald-Oseen theorem: the surface integral represents the
scattered eld, which exactly cancels the incident eld inside the particle.

3.1.5 Scattering in the far- eld zone

In all experiments performed in this work, the scattering properties of the particles are investigated
in the far- eld: the intensity of the scattered light is collected at a distance that is very large com-
pared to the wavelength and any dimension of the scatteringmedium. In this regime, the scattering
process is described by a matrix F that links the asymptotic expression for the scattered wave to an
incident plane wave,

Escat =
exp(i k · r)

r
[F]Einc. (3.11)

e scattering amplitudematrix F describes the electromagnetic eld scattered for a given incident
eld characterised by its frequency and polarisation, and depends on the refractive indices and on

the angle between the incident and scattered beam. Actual measurements will however only meas-
ure an average power ux, proportional to themodulus squared of the elds. Further, to account for
the possible change in polarisation of the beam, a full description of the scattering process requires
the use of Stokes parameters that fully characterise any given light beam. e phase coherency
matrix links the input and output Stokes vectors. Its elements are quadratic combinations of the
elements of the scattering amplitude matrix. A remarkable property of the phase coherency matrix
is that a fully linearly polarized wave remains fully polarized when scattered by a single particle [5].
In most experiments discussed in this thesis (e.g chapter 4) the incident light was fully polarised
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along the axis of the particles and a single element of the scattering matrix is therefore sufficient to
interpret the results.

To characterise the scattering properties of the particles we will consider far- eld cross sec-
tions, namely absorption, scattering, and extinction cross-sections. ese quantities are physical
observables that allow for a direct comparison between experimental measurements and theoret-
ical modelling [33]. Cross-sections express the probability of interaction of the incident light with
the scatterer, and can be derived from the expression of the conservation of energy in the Poynting
theorem (Appendix 1). e scattering cross-section is the area that the beam should intercept to
provide the equivalent energy scattered by the particle; the absorption cross-section is the effective
area taken from the incident beam that is converted into heat inside the particle; and the extinc-
tion cross-section describes the energy that is removed from the beam as a result of scattering and
absorption,

σext =σabs+σsca. (3.12)

For convenience, the scattering, absorption and extinction cross-sections can be compared to the
geometrical area intercepted by the incident beam G , this ratio is named efficiency and should only
be strictly de ned for scatterers with convex shapes.

e scattering cross-section can be obtained by integrating the scattered power in all directions
and normalising to the incident ux: it also characterises the extent to which an incident beam can
be said to interact with the particle in the sense that it expresses the eld overlap between a plane
wave and the normal modes of the scattering body. A metallic nanoparticle can display a resonant
response to visible light and as a result its scattering cross-section may be much greater than the
geometrical cross-section (a factor of 5 for gold spheres, even higher for gold ellipsoids). is
makes it possible to observe the light that is scattered by subwavelength particles with the naked
eye ( gure 4.5).

e absorption cross section measures the loss of energy inside a scatterer: it vanishes for a
non-absorbing material (Im(n ) = 0), and more generally depends on the integrated internal eld,
times the imaginary part of the permittivity,

σabs =
k

|E0|2
∫

V

ϵ′′E ·E∗dr′. (3.13)

e energy lost by scattering and absorption is one facet of extinction: another equivalent de ni-
tion considers extinction as the destructive interference of the light that is scattered by the particle
with the incident light. is standpoint can be expressed in a rigourous manner by considering
the energy conservation for a detector placed in the exact forward direction. e result of this
formulation is expressed in the optical theorem [33],

σext(ω) =
4π

k 2 ℑ [F(0°,ω)] , (3.14)

which relates the far- eld extinction to the forward scattering amplitude F(0°,ω). In general, the
extinction will depend on the polarization state of the incident light, an effect known as dichroism.
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In a turbid medium such as a colloidal suspension, the propagation of light can be treated phe-
nomenologically by the so-called radiative transfer equation (RTE) for which the rigourous deriva-
tion from rst principles (the Maxwell equations) was only very recently achieved [19, 26, 28]. e
radiative transfer equation describes the evolution of the light intensity as a result of (multiple) scat-
tering and absorption. e ratio of scattering to absorption (albedo) and the phase matrix dictate
the evolution of the light intensity as it passes through the medium. For a dilute solution and un-
der very strong simplifying assumptions, the RTE can be reduced to the well-known Beer-Lambert
law that expresses the exponential attenuation of the intensity of the light that traverses a colloidal
solution as a result of scattering (the light is redirected in other directions) and absorption along
the path,

I = I0 exp (−σextN L) , (3.15)

where N is the volume density of particles in the medium, and L the path-length followed by the
light inside the scattering medium.

e intuitive meaning of extinction can lead to erroneous conclusions with respect to experi-
mental measurements: the true extinction in the far- eld is subject to several stringent conditions
as noted in [6, 33]. In practice, it may be impossible to meet all the required conditions and part of
the scattered light in directions other than the exact forward direction may be collected, resulting
in an effective extinction smaller than the ideal de nition.

3.1.6 Scale invariance in scattering theory

An important property of light scattering is the scale invariance rule, which states that the scattering
characteristics of a system depend only on the size parameter de ned as the product k a where a is
a linear dimension of the scatterer, k the wavenumber in the incident medium; and relative index
contrast m = n 1/n 2. In particular, if the index contrast is kept constant, the scattering properties
of the system are invariant upon the following transformation,

a → s ·a
k → k/s ,

(3.16)

where s is a scalar. e scale invariance property holds for most adimensional quantities such
as the scattering amplitude matrix elements, the T-matrix elements, the product of the far- eld
cross sections times k 2, etc. is result forms the basis of the microwave analog technique that
has been used extensively to test experimentally the scattering properties of single particles in the
microwave regime where the fabrication and characterisation of samples is oen easier than in
the optical regime. It also permits one to understand the behaviour of gold nanoparticles in the
visible domain in analogy with radio antennas [34–36]. A major difference in this case however
is the different permittivity ratio (air/metal) as metals behave very much like perfect conductors
at microwave frequencies. Nonetheless, this scale invariance oen provides fruitful inspiration, as
illustrated for instance in the recent design of spoof plasmons at microwave frequencies that mimic
the optical surface plasmon by allowing a decay of the electromagnetic eld into the metal through
the use of a microstructure [37].
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3.2 Rayleigh regime

For particles much smaller than the wavelength, a quasi-static approximation greatly simpli es the
problem and leads to intuitive understanding of the optical response in terms of dipolar radiation.
is is the regime of Rayleigh scattering, that conveniently describes the optical response of small,
optically so particles. is approximation can be deduced from exact theories such as Mie theory
for spheres, or more generally as a result of the rst Born approximation in the volume integral
equation [5, 9, 15].

3.2.1 Dipolar approximation

In a small gold particle, an incident eld will displace the free electrons that oscillate rapidly from
one end of the particle to the opposite side. e ionic background provides a restoring force, and
the system is therefore equivalent to a dipole with two opposite charges separated by a distance
that depends on the particle geometry. Such a dipole radiates energy in proportion to its dipole
moment, which is proportional to the number of charges and their displacement. is simple con-
sideration led Rayleigh to the semi-quantitative description of the scattering of light by small air
molecules ( uctuations of the average air permittivity, more precisely) that is responsible for the
blue coloration of the sky.

e electric eld incident on a small particle will induce a dipole moment proportional to the
particle’s volume (a 3),

p∝ a 3Einc, (3.17)

this dipole will radiate a eld proportional to the acceleration of the charges, that is the second de-
rivative of the dipole moment with respect to time. Treating the incident eld as a monochromatic
wave, the scattered eld in the frequency domain is proportional to,

Escat ∝ω2a 3Einc. (3.18)

e intensity of the scattered light is therefore,

Isca ∝ I inc
a 6

λ4 , (3.19)

where I inc is the incident energy ux with units W/m2.
e 1/λ4 dependence explains why blue light is more strongly scattered than red light for op-

tically so scatterers. From a dimensionality argument, it is clear that the proportionality between
the incident energy ux and the scattered energy integrated over all solid angles must be equivalent
to an area, de ned as the scattering cross-section.

In this discussion, the importance of the scatterer composition has been ignored under the
assumption of a so scattering medium. is is not true for metallic particles in the visible and
infra-red due to the strongDrude response of the free electrons that dictate their optical properties.
Equation 3.17 needs generalising by replacing the particle volume with its shape and wavelength
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dependent polarizability.
p= ϵmαEinc, (3.20)

where the prefactor ϵm is the permittivity of the incident medium that can be different from that
of a vacuum (but generally non-absorbing). e frequency dependence of the polarizability is de-
scribed by the Lorentz-Lorenz formula, also known as Clausius-Mossotti formula when expressed
in terms of the refractive index,

α=
a 3

3
· ϵ− ϵd

ϵ+2ϵd
, (3.21)

e resonance in particles supporting localised plasmons is seen as the pole in equation 3.21: when
the dielectric function of the metal veri es ϵ + 2ϵd = 0, the polarizability diverges, a condition
known as the Fröhlish frequency. e presence of absorption prevents a purely real resonant fre-
quency, therefore limiting the divergence to a Lorentzian lineshape with a width de ned by the
loss in the system. In this resonant regime, the strong dispersion in the dielectric function of gold
introduces a large scattering peak that superimposes on the 1/λ4 trend. Similarly the absorption
and extinction both peak at the excitation of the LSPR.

e Rayleigh-Gans theory is an extension of equation 3.21 which considers the scattering of
light by particles of arbitrary shape, keeping the assumption that the particle size is much smaller
the wavelength [6]. e effect of particle shape on the dipolar response is approximated by the
introduction of a suitable shape factor that accounts for the depolarisation eld of a particle in the
quasi-static limit,

α=
ab c

3

ϵ− ϵd

ϵd +L(ϵ− ϵd )
. (3.22)

Shiing the Fröhlish frequency from the position dictated by the intrinsic material properties can
be achieved by changing the shape of the particle. e physical root of this depolarisation eld
stems from the screening of the external eld by the surface charge that accumulates at the bound-
ary of the particle. Equivalently, this surface charge can be described as an internal polarization
that enters the displacement eld. Each subvolume element of the scatterer experiences a eld that
comprises the external, applied eld, and the eld associated with the response of this surround-
ing, polarised material. Because the shape in uences the distribution of charges at the boundary,
the depolarization eld is size and shape dependent where the Lorentz-Lorenz derivation (equa-
tion 3.38) assumed a spherical boundary. It is possible to evaluate the depolarization factors by
integration of equation 2.25 which can be done analytically for simple shapes such as spheres, el-
lipsoids and in nite cylinders, or numerically for general shapes [6, 38]. For example, ellipsoids
exhibit a depolarization eld that can be expressed in the form,

Edep = L̄P, (3.23)

where L̄ is a tensor with principal components that are the geometrical factors associated with each
axis,

La =
ab c

2

∫ ∞
0

d q

(a 2+q )
p
(a 2+q )(b 2+q )(c 2+q )

. (3.24)
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A sum rule constrains the trace of L̄: the three principal geometrical factors add up to unity, La +

Lb + Lc = 1. Closed form expressions can be obtained for the particular case of ellipsoids with
rotational symmetry (oblate or prolate spheroids).

e effect of the aspect ratio of the particles in the frequency of the LSPR (in the quasi-static
approximation) is shown in gure 3.3.
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Figure 3.3: Variation of the Fröhlish frequency of ellipsoids as a function of aspect ratio.

A resonance is characterised by a pole in the polarizability (equation 3.22), which occurs when
the frequency approaches,

ℜ [ϵd +L(ϵ− ϵd )]≈ 0. (3.25)

is condition is satis ed for
ϵ′ = ϵd (1−1/L) .
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ωs ϵ′(ωs ) geometry

ωp/
p

3 -2 sphere
ωp
p

L 1-1/L ellipsoid
ωp/
p

2 -1 planar surface
ωp 0 bulk

Table 3.1: Resonance frequency of plasmon modes for different geometrical con gurations.

Inserting a simple Drude model of the form ϵ = 1− �ωp/ω
�2 yields the resonance frequency of a

surface modeω,
ω =ωp/

p
d , (3.26)

where d = L/ [ϵd −L(ϵd −1)]. e pole of equation 3.22 is plotted in gure 3.3 for different values
of the surrounding medium and a range of aspect ratios.

Using the permittivity from the Drudemodel, the surface modes have resonances that span the
whole range from L=0 to L=1. e strong absorption of gold for wavelength below 500nm results
in overdamping of the resonances where the pole of equation 3.22 does not correspond to a real
resonance.

It is interesting to consider equation 3.26 with the surroundingmedium set to vacuum (ϵd = 1).
where we recognise a dimensionality argument that links the resonance frequency of the charge
density to the geometry of the system [39, 40] (Table 3.1).

When the size of the particle becomes comparable to the wavelength of light in the surrounding
medium and inside the particle, retardation effects not taken into account in this dipolar approx-
imation start to play an important role.

3.2.2 Retardation effects

Modelling the dipolar response of a scatterer of nite size to an external eld amounts to determ-
ining an equivalent dipole for the system. In fact, any collection of charges can be represented in
the far- eld as an equivalent point source of radiation with characteristics given by a multipolar
expansion [30]. e dipolar term is dominant for the range of sizes we consider in this work. An-
other equivalent view is to divide the scatterer into smaller sub-volumes characterised by a dipole
moment, the integral over this distribution of polarization gives the overall dipolar response.

In this dipolar approximation, two cases can be considered. 1) e object is negligibly small
compared to the relevant wavelength (excitation in the incident medium, and in the particle). In
this case, the problem of nding the polarization of the scatterer is equivalent to an electrostatic
problem. is problem can be solved self-consistently by assuming the establishment of a uniform
and isotropic polarization of the material, proportional to the applied eld. With these restricting
hypotheses, the interaction of the neighbouring polarizable sub-volumes is adequately modelled
by a 1/r 3 electrostatic contribution. e integration over the volume leads to the usual Lorentz-
Lorenz formulation for the polarizability of a sphere, generalised to equation 3.22 for a more ar-
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3.2 Rayleigh regime

bitrary shape. 2) e size parameter is not negligibly small and/or the material of the scatterer is
highly polarizable. In this case, the interaction of the sub-volumes is not only electrostatic, but
also involves dynamic terms that are modulated with the phase of the wave inside and outside the
scatterer. e interaction between subvolumes involves terms with longer range interaction than
the quasi-static limit (1/r 2 and 1/r ) to describe more accurately the coupling of the different parts
of the material. ese contributions generate retardation effects, in that they describe the delayed
radiation of a source from other points in the particle. is effect of retardation is clearly expressed
in equation 3.7 that we used to formulate the scattering problem in terms of a volume integral
equation. e wave equation for the retarded Hertz potential involves the summation of the eld
at a time (t − r /c ) in perfect analogy with the solution of the wave-equation for the electric and
magnetic potential.

e meaning of self-consistency in the above discussion can be expressed as follows: the incid-
ent eld induces a polarisation of the medium, which in turn causes further polarisation, etc. (or
equivalently charges at the surface induce a eld, etc.). When this polarisation is homogeneous in
amplitude and phase and also isotropic, the problem falls into Rayleigh-Gans theory. When the
polarisation is constant and isotropic but its phase varies over the particle, the dipolar term may
still be predominant but the electromagnetic response is no longer quasi-static: the system dynam-
ically evolves as the interaction between different sub-volumes of the scatterer depends on their
relative phase. is is well accounted for in the modi ed long wavelength approximation, which
considers the series expansion in terms of k a of the rst Mie scattering term [16, 41, 42]. Finally,
when the polarization cannot be considered constant in amplitude or isotropic, due to a signi cant
size and/or eld lines distortion by sharp edges, the higher order multipolar terms may become
important. However, when considering the scattering system in a multipolar expansion (or look-
ing at the Mie series), the different terms (multipoles) correspond to orthogonal vector solutions,
which can hence be considered independently for the purpose of discussing the eigenmodes of the
system.
Modi ed long wavelength approximation

When considering particles having a size comparable to the wavelength of light in the sur-
rounding medium, dephasing effects come into play and the quasi-static approximation breaks
down. eMie theory includes such retardation effects, whereas the Rayleigh approximation trun-
cates the Mie series to the rst static dipole term and breaks down for particles with 2a & λ/10

where λ is the wavelength in the surrounding medium.
Non-spherical particles need further correction that account for the aspect ratio that affects

the depolarisation eld, therefore the position of the LSPR. A semi-analytical correction known
as the modi ed long wavelength approximation can retrieve most of the physics, with the notable
exception of multipolar resonances. In this approximation, the electric eld inside the particle is
represented as the sum of the incident eld, plus a correction from the response of the medium [9,
41, 42],

Erad =
2

3
i k 3P+

k 2

a
P, (3.27)
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3.2 Rayleigh regime

a being the semi-major axis of the particle along the polarisation of the incident eld. e rst
term describes radiation damping, i.e. the loss of energy in the form of radiation. In physical
terms, this means that the eld radiated by the moving charges does work on the particle (self-
reaction, also described as radiation resistance in the antenna literature) [8, 43]. e second term
represents a dynamic depolarisation — each point of the particle contributing to the effective eld
seen at another location, this eld becomes more and more out of phase across the particle as the
characteristic size of the particle increases.

Using equation 3.27 the dipolar response of a particle is formulated in terms of a corrected
polarizability of the form,

αmlwa =
αstatic

1− 2
3 i k 3αstatic− k 2

a α
static

. (3.28)

e derivation presented in Appendix B may be invoked to realise how an effective polarizability
of the form 3.28 can result in a red-shi and broadening of the LSPR.

In the realm of the Rayleigh-Gans theory the expression for the extinction cross-section sim-
pli es to,

σext = kℑ(α), (3.29)

which expresses the interference between the incident and scattered eld. e scattering cross-
section reads,

σsca = k 4|α|2. (3.30)

e modi ed long wavelength approximation has been introduced as a generalisation of the
work of Meier and Wokaun for spheres [42]. An alternative route to describe the retardation effects
in the dipolar approximation consists of truncating the Mie theory to its rst terms and develops
the solution in powers of k a . is procedure led Kuwata et al. [44] to a practical formulation
of the retardation corrections for arbitrarily shaped particles [44]. Figure 3.4 compares the mod-
elled response of two gold ellipsoids with different prescriptions for the polarizability : quasi-static
(equation 3.22), MLWA (equation 3.28), Kuwata. A rigourous solution of the Maxwell equations
obtained with a T-matrix code (described in section 3.4.2) is shown for comparison.

Using this model together with the polarizability of ellipsoids can provide a good approxima-
tion to the features observed, when no multipolar resonance is present.
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Figure 3.4: Comparison of approximate models: static, MLWA, Kuwata for a gold ellipsoid in a
surrounding medium of index 1.46 (permittivity from Johnson and Christy). e comparison is
made for a prolate and an oblate ellipsoid (long-axis 60 nm, short axis 30 nm). e dashed lines
show the exact result obtained from the null- eld method.

3.3 Mie scattering

Mie theory is one of the few examples of exact analytical solutions to the scattering problem. It
belongs to the class of methods known as separation of variables (SVM) whereby a solution to the
wave equation equation 2.17 is sought in spherical coordinates r,θ ,ϕ, with the form,

E (r,θ ,ϕ) = F (r )G (θ )H (ϕ). (3.31)

Such solutions will exist only if the Laplace operator ∇2 is separable in the particular geometry
of the problem. ere are only a few coordinate systems where this is the case, most notable of
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3.3 Mie scattering

which are the spherical and ellipsoidal coordinates. Mie theory is the application of the separation
of variables to a spherical scatterer illuminated by a plane wave. e simplicity of the Mie solution
and its analytical formulation have lead to the widespread use of Mie theory beyond its strict range
of applicability. Because it provides a theoretically exact solution to the scattering of light by a
spherical particle, with any size parameter and dielectric function, the Mie theory is oen used
as a benchmark to test the accuracy of other numerical techniques. Such analytical solutions can
also be derived for ellipsoids [45], however the solutions are much more difficult to implement and
result in numerical codes that behave very similarly to numerical methods such as the Null-Field
method (NFM) discussed in section 3.4.2 (in fact, some tests not presented here showed that the
NFM was generally faster than a code based on the SVM in ellipsoidal coordinates (Ref. [45]) for
a comparable accuracy).

We begin by considering two orthogonal vector spherical wave functions M and N =
∇×M

k
that satisfy the vector wave equation and are divergence free. It can be shown [8] that this is equi-
valent to solving the scalar wave equation for a potentialψ, with M and N retrieved from,

M=∇× (rψ). (3.32)

Solving the vector Helmholtz equation is therefore reduced to the problem of solving the scalar
wave equation in spherical coordinates. Applying the method of separation of variables to this
equation leads to a system of three decoupled differential equations in the variables r , θ and ϕ.
e radial dependence satis es a Bessel equation, the azimuthal dependence satis es an associated
Legendre equation, and the longitudinal coordinate is a simple harmonic function that describes
the quantization of the eigen-modes around the sphere. e angular dependence of the electromag-
netic eld can therefore be expanded onto the basis of vector spherical harmonics Ym

l (θ ,ϕ), which
represent normal modes of the electromagnetic eld for a sphere. e scalar spherical harmonics
have the following expression,

Ym
l (θ ,ϕ) =

r
(2l +1)(l −m )!

4π(l +m )!
Pm

l (cosθ )exp(i mϕ). (3.33)

with Pm
l the associated Legendre polynomials. Figure 3.5 shows the real part of the rst few spher-

ical harmonics for l = 1 to l = 5. We recognise the increasing number of nodes and antinodes as
the numbers l increase. Comparison of the rst few spherical harmonics with gure 2.13 reveals
the identity between the eigen-modes of the charge density on a spherical particle and the Mie
solution. Higher order spherical harmonics describe the excitation of multipolar resonances.

e solution of the scattering problem is obtained by projecting the incident, internal, and
scattered elds onto a suitable basis of vector spherical harmonics M and N. e coefficients
a l ,b l , c l , d l of these expansions are linked using the continuity relations of the electric and mag-
netic elds at the boundary of the particle, in a similar fashion to the planar interface. In fact,
the analogy can be extended to multilayered spheres [46] where recursive formulas link the elds
in each successive layers (such an extension of the Mie theory is used in gure 3.9). e overlap
integral of a plane wave with the normal modes over a sphere is non-zero only for m = 1, there-
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Figure 3.5: Spherical harmonics for l = 1 to l = 5 (Bottom view: ϕ = θ = 0, Top view: ϕ = 0,
θ = 90°). Only positive values of m = −l · · · l are shown, the negative values are obtained by a
simple rotation.
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3.3 Mie scattering

fore the Mie solution can be expressed as a series over only one index, l . e general form of the
scattered eld is formally written as an in nite sum of vector spherical harmonics, each of these
can be considered as a normal mode of the scatterer, or partial wave [6],

Escat =
∞∑

l=1

E l (i a l N−b l M) , (3.34)

where the scattering coefficients have the form,

a l =
mψl (m x )ψ′l (x )−ψl (x )ψ′l (m x )

mψl (m x )ξ′l (x )−ξl (x )ψ′l (m x )

b l =
ψl (m x )ψ′l (x )−mψl (x )ψ′l (m x )

ψl (m x )ξ′l (x )−mξl (x )ψ′l (m x )
,

(3.35)

withψl ,ψ′l , ξl andξ′l the Riccati-Bessel functions and their derivatives, and m the relative refract-
ive index. In any practical implementation of this theory we need to truncate this series expansion,
the approximation requires more terms as the size parameter increases.

In gure 3.6 the scattering, absorption and extinction spectra of a gold sphere are presented for
two values of the permittivity of the surrounding environment and three different sphere diamet-
ers. e smallest sphere exhibits a characteristic dipolar response: the scattering is much weaker
than absorption and the interband transition leads to a clear absorption edge below 450 nm. e ef-
fect of increasing the refractive index of the surrounding medium is to enhance the cross-sections:
the effective size parameter is increased as the wavelength in the medium is reduced. A slight red-
shi of the LSPR is observed as a result of dynamic depolarisation. As the sphere is made larger,
the scattering becomes more important and in fact at 50 nm radius the scattering and absorption
cross-sections are of equivalent magnitude. In a vacuum, a 80 nm radius sphere exhibits mainly
a dipolar response, but changing the surrounding index to 1.5 introduces a quadrupolar feature
at 450 nm. As the sphere size increases, the scattering dominates and higher order resonances ap-
pear that lead to a very broad scattering response that can span the whole visible range. A 500 nm
radius sphere exhibits a scattering spectrum that resembles the re ection from a continuous gold
lm ( gure 2.4, chapter 2.). We also note that the efficiency reaches a maximum of about 5 before

decreasing towards 2 (the so-called extinction paradox discussed in Ref. [6]). is con rms that the
interaction between light and particles is maximum for ratio size/wavelength of order unity [16].
e absorption cross-section also saturates to a sharp edge that resembles the absorption charac-
teristics of planar gold ( gure 2.4).

To further investigate the size-dependence of the scattering by gold nanoparticles, gure 3.7
presents a comparison of the relative strength of different partial waves in themultipolar expansion
of the elds. is is done by truncating the Mie series to the rst, second, and third coefficients
for the  and  modes (a l and b l coefficients of equation 3.34). e de nition of  and 
is analogous to the planar case, where the local form of the electromagnetic eld is characterised
immediately outside the sphere:  (resp. ) modes correspond to the electric (magnetic) eld
tangential to the sphere.
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Figure 3.6: Scattering, absorption, and extinction efficiency spectra of gold spheres (permittivity
from Johnson and Christy) in air (le panels) and in homogeneous surrounding index (1.5, right
panels) for 3 values of the sphere radius: 20 nm (top), 80 nm (middle), 500 nm (lower).

e smaller particle exhibits a purely dipolar response with no magnetic contribution. At
80 nm, a shoulder on the high-energy side of the dipolar resonance reveals the presence of a weak
electric quadrupole resonance. e magnetic dipole response is almost zero. For a large sphere
of 100 nm radius (larger than any particles studied in this work), the quadrupolar response is of
comparable intensity to the electric dipole [47]. e magnetic dipole response is weak, and does
not exhibit a resonant behaviour. e magnetic response simply adds a slowly varying background
contribution.

Figure 3.8 shows the calculated eld pro le around gold spheres at three particular frequencies
corresponding to the resonant excitation of multipolar modes. e eld intensity decays very rap-
idly in the dielectric surrounding the particles. e cross-sections describe the interaction between
an incident plane wave and the particle and can be compared to experiments performed in the far-
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Figure 3.7: Comparison of the scattering cross section obtained from the rst 2 coefficients and the
fully converged series in the Mie theory for gold spheres of radius 20 nm, 80 nm, and 100 nm. e
surrounding medium is of index 1.5.

eld. It is also possible to infer some near- eld properties of the scattering by a particle by compar-
ing the response of the bare particle and the response of the particle with a thin dielectric coating.
is is done by using a generalisation of the Mie theory for concentric layers. For sufficiently thin
and so coatings, the modi cation of the elds near the particle is small enough to be described as
a perturbation of the modes of the bare particle. In planar systems the decay length of the SPP is
much larger than the extent of a layer of target molecules in a typical biosensing experiment; it is
therefore possible to reduce the effective sensing volume by using localised plasmons with a much
shorter decay length [48]. is has the advantage of making the sensor less prone to background
variations in index from the bulk solution such as temperature and pressure uctuations. In g-
ure 3.9 the in uence of a thin coating on the far- eld scattering response of gold nanoparticle is
studied for a typical con guration: the bulk index of the surrounding medium is that of air (le
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3.3 Mie scattering

Figure 3.8: Mie calculation of the scattered electric eld around gold spheres of different size
parameter. e colour scale indicates the time-averaged magnitude of the electric eld (modu-
lus squared). e internal eld is not represented in these plots.

panels), and water (1.33, right panels), and a coating of index 1.5 characteristic of most biological
molecules [49] is added in increments of 1 nanometre. As the thickness of the overlayer is in-
creased, the LSPR is seen to present a consistent red-shi from the position of the resonance of a
bare particle in air (le) or water (right). e intensity of the scattering is also increased, and this
can attributed to both the increase in diameter of the scattering body, and also in the variation of
the permittivity across the visible range (gold is a ‘better’ Drude metal near the IR region). e
dashed line represents the scattering response of a particle in a homogeneous index of 1.5. It is in-
teresting to note that although the peak position of the LSPR of the coated particles tends towards
this resonance frequency, the intensity is considerable weaker for the homogeneous case. is is
because the limit of an in nite thickness of the coating is not a realistic physical situation for the
far- eld scattering response which considers the scatterer as a point source of radiation. To com-
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Figure 3.9: Scattering cross-section spectra of gold spheres in air (le panels) and in water (right
panels) with an overlayer of increasing thickness and index 1.5 calculated with the Mie theory.
ree radius of the core sphere are considered: 20 nm, 50 nm, 100 nm. e dashed lines consider
the case of an homogeneous medium of index equal to that of the coating.

pare with the situation for a homogeneous medium, the detector would need to be placed inside
the coating.

3.4 Numerical techniques for nanoparticles of arbitrary shape

eoptical properties of non-spherical particles can differ considerably from the response of spher-
ical particles [5, 46]. Unfortunately, analytical solutions to the scattering problem are limited to
very particular shapes (e.g. in nite cylinder, spheroids, and spheres). A large range of numerical
techniques are available to solve the Maxwell equations for a particle (or system of particles) of ar-
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bitrary shape (possibly inhomogeneous). Kahnert [18] gives a comprehensive review of the most
widely used techniques such as FDTD, FEM, DDA, and T-matrix techniques, each method having its
advantages and drawbacks. Of particular interest for fast and accurate computations is the family
of T-matrix methods [50].

3.4.1 T-matrix formulation

e T-matrix is a very general reformulation of the scattering problem which was rst introduced
by Waterman (1965) [50]. His initial formulation was linked to the null- eld method [51] which
is one of several techniques that can be employed to extract the T-matrix of a scatterer [52]. e
T-matrix formalism was later recognised as a powerful tool to describe the scattering by single
particles and clusters of particles including in nite periodic structures.

In this approach, the linearity of theMaxwell equations is used to postulate a linear relationship
between the coefficients a m n and bm n of an expansion of the incident eld onto a basis of vector
spherical wave functions (VSWFs), and the coefficients of the scattered eld pm n and qm n ,p

q

= hT
ia

b

 . (3.36)

e fact that the VSWFs form a complete basis over a sphere surrounding the scatterer reveals one
of the most appealing features of the T-matrix formulation in that it contains the full description
of the scatterer independently of the orientation of the particle and of the incident eld. is is
particularly useful when one considers the scattering by a collection of particles in arbitrary con-
gurations: one only needs to calculate the T-matrix of each individual element separately. e

formalism lends itself to very efficient analytical formulas for the rotation and translation of the T-
matrix that can be used to treat the scattering problem of a cluster in any direction and polarisation
of the incident light, and for averaging over orientations. e treatment of multiple scattering in
a cluster can make use of the translation theorem for vector spherical wave functions: the partial
waves scattered by any individual component of the cluster can be expressed in a basis of VSWFs
centred at any other particle location. e T-matrix elements can oen be simpli ed for scatter-
ers with a particular symmetry such as axially-symmetric particles. Spheres, for example, lead to
drastic simpli cations and the double in nite series reduce to the single series of the usual Mie
formulation. In this sense the T-matrix provides a generalisation of the Mie theory to arbitrarily
shaped particles and systems of particles.

Although a wide range of techniques are available to calculate the T-matrix of a particle, the
most commonly used implementations are based on a variation of the null eld method. e ele-
ments of the T-matrix are expressed in terms of vector products of VSWFs on the particle surface.

3.4.2 Null eld method

e Null-Field method is based on equation 3.10 which is the surface-integral counterpart of the
volume integral equation. e discretization of the scatterer is therefore done only at the boundary
of the particle, which oen results in a much reduced computational cost in terms of time and
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3.4 Numerical techniques for nanoparticles of arbitrary shape

storage. Axi-symmetrical particles can provide additional improvement in computation time as
the costly element integration needs to be carried only in one dimension. e incident, internal,
and scattered elds are represented using a basis of vector spherical wave functions. e coefficients
of these expansions (incident and scattered) are related by the T-matrix, which describes completely
the scattering system for a given incident wavelength.

To compute the T-matrix, the Null Field Method applies the following scheme [53]: (i) at the
boundary of the particle domain, the null eld equation 3.10 must be satis ed, which provides a
relation between the internal eld and the incident eld. (ii) e scattered eld is computed from
the surface currents by applying the Huygens principle: each portion of the surface is a source
which radiates a wavelet, the scattered eld comprises the wave-front obtained by summing over
these partial waves.

e convergence of the technique has been the object of extensive studies, and the T-matrix
is generally used as a benchmark for other numerical techniques due to its excellent numerical
accuracy in the far- eld zone. Several improvements to the technique have been proposed, in this
work I used the implementation by Eremin et al. [53, 54], known as the discrete sources method.
Discrete current sources are located on the surface of the particle and the expansion is made over
VSWFs located at these sources. e computation can be drastically shortened when the particle is
axisymmetric: the sources are then placed on the axis of the particle and the summations involve
line integrals rather than surface integrals.

3.4.3 Discrete Dipole Approximation

eDiscrete Dipole Approximation is based on the volume integral formulation 3.9. e scattering
volume is discretized (oen in a cubic lattice) in a set of N polarizable elements (or ‘dipoles’). Each
of the dipoles is assigned a polarizability that describes its response to an electromagnetic excitation.
emost commonly used prescription forα is a corrected version of theClausiusMossotti equation
that accounts for the radiation damping of the dipole element. e sub-elements are allowed to
interact via the retarded expression for the eld of a dipole.

Each dipole element radiates a eld in proportion to the local eld it experiences,

p(d) =αEloc, (3.37)

where α is related to the optical constant of the material. In the rst formulation of the DDA, the
Clausius-Mossotti prescription was used,

αCM = v
ϵ−1

ϵ+2
, (3.38)

where v is the volume associated with a polarizable sub-unit. Because each dipole is surrounded
by a large distribution of identical dipoles, the incident eld it experiences is substantially different
from the external eld. In general, the local eld may be divided in several contributions,

Eloc = Einc+
∑

dipoles\i
E(d)+(Ere +Esubs) , (3.39)
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where the sum represents the contribution of the dipolar eld associated with the other dipoles
in the scatterer volume, Ere and Esubs are supplementary contributions that may arise when the
particle is supported by a substrate. ey represent respectively the additional excitation eld res-
ulting from the re ection of the incident eld on the substrate, and the eld resulting from the
re ection of each dipole element on the substrate. Esubs has been approximated as the effect of
dipole images [55], or more rigourously by replacing the free space Green’s dyadic describing the
coupling between dipoles by a Green’s function in the presence of an interface [29].

e eld radiated by a dipole is described by,

E(d) =
e iωr /c

4πϵ0

�
ω2

c 2r
r̂×p× r̂+

�
1

r 3 −
iω

c r 2

��
3(r̂ ·p)r̂−p

��
. (3.40)

Ignoring the re ection terms for clarity, we can cast equation 3.39 in matrix form,

AP= Einc, (3.41)

where A is the interactionmatrix that describes the radiative coupling between the polarizable units
in the non-diagonal terms,

A i j =
e (i k ri j )

ri j

(
k 2(r̂⊗ r̂− I)+

i k ri j −1

r 2
i j

(3r̂⊗ r̂− I)

)
, (3.42)

and the self-reaction term 1/α in the block diagonal.
Solving equation 3.41 for P can be a problem as the discretization of a particle will typically

require 50000 elements to obtain a good accuracy. Iterative methods for inversion can be used,
but the most efficient technique to date is based on a fast Fourier transform taking advantage of
the particular Block Toeplitz structure of A when the grid is chosen with cubic symmetry. is
improvement arises because the radiative coupling depends only on the relative distance between
two dipole elements and can therefore be written as a spatial convolution [56].

When the polarization is known at all points inside the discretizedmesh, the scattered eld and
all optical properties are readily obtained. For example, the extinction cross-section is obtained by,

σext =
4πk

|E0|2ℑ(Einc
∗ ·p(d)). (3.43)

Several numerical tests showed that the DDA has a large computational cost compared to the Null-
Field method and offers little advantage for the simple shapes (ellipsoids) that I studied in this
thesis. e coupled dipolemodel is however a useful concept to usewhen describing the interaction
between small nanoparticles, with only a fewmodi cations to the DDA equations as described in the
next section.
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3.5 Multiple scattering by collections of particles

Scattering is de ned as the result of the interaction of the electromagnetic eld with an obstacle
without any restriction on the form of the material. In particular, the scatterer may comprise sev-
eral unconnected bodies without altering the preceding formalism. For example a unit cell of the
computational box in FDTD or FEM methods can contain several particles and we need to solve
the Maxwell equations in all of the computational domain. With a large collection of scatterers
such an approach can become difficult if not impossible to manage in a reasonable amount of time.
is is where the concept of multiple scattering can be used as an alternative route to solve the
Maxwell equations for a cluster of scattering objects when the individual scattering properties are
known beforehand. ere are two equivalent approaches to this multiple scattering formulation:
the successive scattering orders method and the self-consistent approach [57]. In the successive scat-
tering orders method the scattering by each particle is rst evaluated in the single-scattering ap-
proximation where each particle is only excited by the incident eld. e resulting partial waves
scattered by each particle are then used to compute a second order of scattering by the neighbour-
ing particles, etc. until convergence is attained. is approach is very general and is justi ed by
the rigourous order-of-scattering expression of the volume integral equation 3.9. Some approx-
imations can be introduced so as to simplify the problem, such as neglecting certain scattering
paths [26]. e second approach seeks the unknown distribution of the eld in all space in a self-
consistent manner: the eld scattered by each particle is expressed in terms of the unknown total
eld.

When considering the optical response of a collection of closely spaced particles, the question
arises as to whether the light incident on each particle contains a non-negligible contribution from
the light scattered by surrounding particles. If each scatterer experiences only the incident eld,
the response of the medium to light is said to be dominated by single scattering, and the far eld
intensity measurements are simply described by an average of the individual particle scattering re-
sponse [58]. If, however, the scatterers are not very so or very dilute, the interaction can become
signi cant and one has to consider a multiple scattering picture. A general review of the differ-
ent degrees of approximation is given by Mishchenko [26, 28, 58], and links the radiative transfer
equation to its microscopic derivation from the Maxwell equations.

Perhaps the simplest approach to multiple scattering is the consideration of a set of dipoles
that form a coupled system, the interaction between two dipoles can be exactly described in the
explicit, closed form of an effective polarizability [57].ere exists a strong connection between the
formulation of the multiple scattering problem by a system of interacting dipoles, and the Discrete
Dipole Approximation introduced in 3.4.3. I present in the next section the gist of the coupled
dipolemodel that will be used in 5–8 as themajormodelling approach to investigate the interaction
in a collection of gold nanoparticles.

3.5.1 Coupled dipole model

e coupled dipole model has been widely used for several decades[59–61], and despite its relative
simplicity I will show in the experimental sections of this thesis that it can provide an accurate ap-
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3.5 Multiple scattering by collections of particles

proximation to the behaviour of complex many body systems. I present here a simpli ed version
of the CDA that captures the major assumptions and results. e literature offers many detailed
studies, see for example [62, 63] for a more complete treatment. In the coupled dipole approxima-
tion, each particle is modelled as a dipole of polarizability α. e particles studied in this work are
described as ellipsoids (semi-axes a , b , and c , volume V ), for which the static polarizability can be
written as [6],

αstatic = ab c
ϵm − ϵd

3ϵd +3L(ϵm − ϵd )
, (3.44)

with ϵd and ϵd the relative permittivities of the metal and surrounding medium respectively, L is a
shape factor. When the particle size is of order 50 nm ormore, this expression needs to bemodi ed
to account for dynamic depolarisation and radiative damping. We do so by introducing an effective
polarizability of the form equation 3.28. When excited by an electromagnetic wave at frequency
ω, a dipole re-radiates a scattered wave in proportion to its dipole moment. e net eld on every
dipole is therefore the sum of the incident eld, plus the radiation from all other dipoles, which
leads to a system of coupled equations similar to equation 3.41 to be solved self-consistently for the
total eld.

3.5.2 Other techniques

Effective medium approximation
Whenvery small particles are embedded in amatrixwith a low concentration, effectivemedium

theories can be applied as a simple macroscopic model [64]. Maxwell-Garnett theory describes the
effective permittivity of such composites, in a derivation similar to the one used in the Clausius
Mossotti equation, with the inclusions being modelled as dipoles in a continuous background. It
should however be noted that the Lorentz expression for the internal eld was derived under the
assumption of a cubic lattice or a randomorientation of the dipoles. Clearly, transposing thismodel
to a 2D ordered or disordered array can have consequences on the validity of the effective medium
approach, in particular the effective dielectric function of a composite material can present a non-
local form [65, 66]. In particular, coherent coupling in regular arrays require us to introduce ad hoc
corrections which eventually break down when multipolar resonances are present in the medium.
Superposition T-matrix method

When the T-matrix of individual scatterers has been obtained from rigourous calculations, the
multiple scattering technique may be obtained using the formalism of the superposition T-matrix
method. e principle of this technique relies on the translation theorem for VSWFs: the partial
waves scattered by each individual scatterer are expanded in the basis of VSWFs at the centre of
each neighbouring particles. e coefficients for this translation and expansion of VSFWFs are
known analytically, resulting in a very efficient formalism that can model hundreds of particles
in arbitrary orientations and positions. e particular case of a periodic arrangement can lead
to drastic simpli cations that allow for an analytical closed-form formula for the response of the
medium in terms of the individual particle response. is formalism was developed in the study of
electron diffraction in solids (KKR method) and later applied to dielectric and metallic photonic
crystals [11, 13, 67].e essence of the formalism is to convert the in nite sum of the scattered eld
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from the periodic structure in the Fourier space where the series can be calculated more efficiently
by the method of Ewald summation [14].

3.6 Challenges

is section would not be complete without mentioning the current limitations in our ability to
reproduce and better understand the experimental results with the help of numerical modelling.
To this aim, Iwould like to present some remarks regarding the limitations I have faced inmodelling
the scattering of light by gold nanostructures.

e rst issue concerns the comparison between modelling and experiments. e modelling
approaches mentioned in this chapter suffer two limitations. First, the practical implementation
of the scattering codes can make the use of a powerful technique difficult without a deep under-
standing of the theory behind the model — this is the case for the T-matrix method and advanced
multiple scattering codes. Second, the current numerical methods for arbitrary shaped particles
and in particular large aggregates of such particles are relatively slow even on modern computers,
which makes the optimization of a structure a difficult task.

Many powerful techniques are available, each with its own strengths and weaknesses. emost
widely used techniques are Mie theory, T-matrix, FDTD, DDA, FEM, and approximate techniques (for
instance, the Rayleigh-Gans theory of section 3.2). Improvements on these methods is an active
eld of research, particularly in the context of metallic nanoparticles where they face the following

challenges: (i) Transition from ab initio calculations to a macroscopic index description in nano-
scopic structures [17]; (ii) Ameliorate our knowledge of optical dielectric functions, possibly by
designing new experiments on nanoscale samples. (iii) e extent to which a description of a ma-
terial in terms of a macroscopic response function (ε, µ) can be valid (e.g. for metamaterials, the
question arises as to whether this set of effective parameters is unique for a structure. Non-local
effects are another limitation in this regard).

On the technical aspect, I should like to mention a few interesting challenges that I have not
considered in this thesis. First, the in uence of a substrate on the scattering properties of particles is
of great importance with respect to the particle sensitivity to the surrounding index [68], and is also
responsible for a strong modi cation of the coupling between particles investigated in chapter 6.
e presence of a substrate has been successfully modelled in a variety of numerical codes such as
the T-matrix method [69], and the DDA [22] but requires a large modi cation of the available codes.

Similarly, the accurate comparison of the optical measurements of the scattered light by single
particles with numerical modelling requires a precise match of the description of the incident light
beam with the experimental setup. In dark- eld spectroscopy, the range of incident angles departs
substantially from a collimated beam (plane wave). In addition, the objective lens only collect a
portion of the scattered light and the angular distribution of the scattering pattern may vary as a
function of wavelength for large particles or for particles placed on a substrate. e experiments
should therefore be performed with a well-de ned incident angle and polarisation state, and the
modelling should consider the integration of the differential scattering cross-section dσsca/dΩ

over the solid angle Ω de ned by the numerical aperture of the collection optics [69].
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Investigating large but not in nite clusters of particles can be very computationally intensive.
A promising approach to deal with such problems is to treat separately the scattering at different
length-scales. For example each particle can be discretized with a ne mesh to account for the
abrupt change of dielectric function with the surrounding medium, but the interaction between
particles can be modelled on a coarser grid. Such a scheme has been suggested within the DDA

method where the polarisable points need only to describe the particles [27].
Finally, I should like to note that I restricted the discussion to linear optical processes: nonlinear

and inelastic processes in relation to plasmonic components are still less studied although recent
theoretical advances suggest proli c comparisons to be made [70–72].
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“L’homme est capable de faire ce qu’il est incapable d’imaginer.”
René Char 4

Experiments on single nanoparticles

T   the fabrication technique of electron-beam lithography that was
used to fabricate samples with a precise control over the shape and size of nanoparticles. e

in uence of the shape and size of the particles on their optical characteristics is investigated through
an analysis of the correspondence between the geometry of the particles retrieved from scanning
electron micrographs (SEMs) and the optical scattering spectrum of the same isolated particles
using dark- eld spectroscopy. e use of nanorods in particular allows us to better characterise
and understand the dependence of the LSPR spectral position and width on the particle volume
and aspect ratio. Numerical modelling based on the techniques presented in chapter 3 is used to
improve our understanding of the scattering properties of individual gold nanoparticles.

4.1 Fabrication techniques

e use of gold (and silver) nanoparticles for their optical properties can be traced back centuries
ago, when artisans empirically obtained the bright colours of certain stained glass windows (a typ-
ical bright red for gold inclusions). is motivated the work of Mie who solved the more general
problem of scattering by a sphere of arbitrary dimension and refractive index, a theory still act-
ively used and studied a hundred years later [1]. It is a very notable fact that Mie’s original paper
ranks amongst the most cited papers in physics despite its apparent specialised impact [2]. It is,
in comparison, only in the past two decades that a precise study of gold nanoparticles started to
develop. is situation stems from the difficulty in fabricating and characterising the precise mor-
phology of objects that are smaller than the diffraction limit of conventional optics. In gure 4.1
we illustrate the advance in this eld by juxtaposing two different samples from completely dif-
ferent periods in time. e bottom image presents the Lycurgus cup, a Roman work dated to the
4th century A.D. that can be found in the British museum. It is composed of gold and silver nan-
oparticles embedded in the glass, these particles present in minute concentration (1%) produce a
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4.1 Fabrication techniques

striking variation in taint [3]. Observing the vase in re ection yields a green colouration, while in
transmission the vase appears red. e top picture is a set of four silver nanoparticles produced in
2007 using electron-beam lithography and characterised optically using dark- eld spectroscopy.
e bright colours observed in scattering illustrate the strong in uence of the size and shape on
the scattering response (true colours, this illustration is courtesy of W.A. Murray [4]). With silver,
the coloration may span across the whole visible range by small variation in the particle sizes. e
strong absorption in the high-energy side of the visible spectrum limits the range of observable
colours for gold nanoparticles.

(c)

(a)

200nm

(b)

Figure 4.1: Illustration of the coloration due to plasmonic nanoparticles. (a) Lycurgus vase in re-
ection. (b) Transmission (from [3], © Trustees of the British Museum). (c) SEM and dark- eld

image of four silver nanoparticles (courtesy of W.A. Murray [4]).

4.1.1 Electron beam lithography

Several types of samples have been produced for this thesis, with two main purposes: (i) single
particle characterisation, requiring a large spacing (typically 5 µm); (ii) observation of electromag-
netic interaction between particles in a dense array of particles (this is the subject of chapters 5—8).
e process of EBL is illustrated in gure 4.2, and involves the following steps:
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4.1 Fabrication techniques

(a) substrate preparation (b) resist deposition

(e) metal deposition

(c) exposure

(f ) lift-o�(d) development

e-

Figure 4.2: Schematic of the EBL process.

a. Cleaning of the substrate. First, the glass substrate is placed in nitric acid for 30 minutes,
then rinsed in a sonicating bath of deionised water for 15 minutes. is is to remove the
inorganic dust particles. Second, the substrate is placed in a sonicating bath with acetone,
followed by isopropanol (IPA) (15minutes each). e acetone is used to dissolve any organic
contaminant, and the IPA further cleans the substrate from any residual chemical present
with the acetone. e substrate is subsequently drag-cleaned on both sides with lens tissues
and acetone followed by IPA. Dry nitrogen is nally used to remove any dust particles prior
to the application of the resist coating.

b. Coating of the substrate with a sensitive resist. A mixture of a polymer (PMMA) diluted in a
solvent (anisole) was used for all the samples reported here. e coating was done by spin-
ning the substrate at 1500 rpm aer depositing a drop of the liquid resist. is spinning rate
was maintained for 90 s, resulting in an approximately 80 nm thick layer covering the sub-
strate. e lm uniformity across the substrate is of little importance for our application as
the typical region occupied by the sample is less than half a millimetre in extent. e sample
is then placed on a hot plate at 180 degrees for half an hour, to evaporate the solvent. A
thin gold lm (15 nm) is deposited for non-conducting substrates, following the procedure
described in (e). is ensures that the substrate is conducting, a requirement for the electron-
beam lithography process (the electron beam and the sample form a closed electrical circuit
from the source to the ground).

c. e sample is placed under vacuum in the electron-beam system. Aer careful alignment
and focussing procedures, the desired pattern is drawn by the collimated electron beam that
passes through the resist layer, thereby exposing it with high energy electrons. e voltage
and intensity of the beam can be adjusted to reach a good compromise between the exposure
time (inversely proportional to the current passing through the sample), the available voltage
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4.1 Fabrication techniques

(directly controlling the energy of the electrons), and the required precision. Typical values
for our available system were: V=30 kV, I=20 pA, dose 400 µC/s−2. (see Appendix C for
more details on the EBL process).

d. e sample is retrieved from the EBL system and the exposed resist is developed in a mix-
ture of 90% isopropanol and 10% pure water for 1 minute, under constant agitation. In this
process, the exposed areas of the positive resist are chemically dissolved and removed from
the sample, leaving the underlying substrate free. e sample is immediately rinsed in de-
ionised water for one minute. e development time is carefully monitored as the exposed
area of the resist presents a gradual degree of exposure. Insufficient developing time may
prevent the metal that is to be deposited to form the particles from being in contact with
the substrate, and over-developing results in a loss of resolution in the particles. It is vital to
maintain the sample in a very clean condition, as any contaminant would compromise the
subsequent deposition of metal on the bare glass.

e. e sample is placed in a vacuum chamber, where gold is deposited by thermal evaporation.
e thickness is monitored in real time by a calibrated quartz crystal situated in the chamber.

f. e remaining resist mask is dissolved in boiling acetone for several minutes to half an hour,
until the sample appears clear from the thin gold coating covering the mask. e particles
that were deposited on the bare glass are le in place, and the sample is cleaned in IPA and
dry nitrogen from any chemical residue.

A set of different particle shapes is presented in gure 4.3. Each of the four duplicates of each shape
(rod, triangle, square, disc) was produced on the same sample with the same nominal pattern. e
variation from particle to particle is attributed to the limited resolution of the EBL process, and to
the grain structure of the metal deposed by thermal evaporation.
Limitations

e electron beam can be de ected only over a limited area at a given resolution. is limits
the spatial extent of the patterns that can be exposed in a single run. For larger areas, the stage
holding the sample needs to be moved, and this mechanical displacement has less accuracy and
leads to stitching problems. is limitation concerns large arrays of particles (chapter 5 to 8) and
is not a problem for the single particles studies that are the object of this chapter.

e resolution (a few nanometres with the resist and lithography system available) is limited by
a range of factors. First, the sensitivity and contrast of the resist lead to a limitation of the smallest
features attainable, and to a blurring of the exposed pattern. Second, as the e-beam traverses the
resist layer and the substrate, a widening of the beam occurs because of the scattering of the elec-
trons by the material and the generation of secondary electrons that are emitted in all directions.
e forward and backscattered secondary electrons induce an overexposing of the area around the
pattern. In particular, the electrons backscattered from the substrate will expose a very large area
of the resist layer. is can be a problematic issue in dense arrays and the dose must be carefully
adjusted by using a range of doses and establishing an empirical chart of the optimal dose as a
function of feature size and array density.
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4.2 Optical characterisation

200 nm

Figure 4.3: SEM of 16 gold nanoparticles of xed thickness (30 nm) on an ITO coated glass sub-
strate. e nominal shapes (triangles, squares, rods, disks) and dose were identical for each family
of four particles.

4.2 Optical characterisation

Although metallic particles are responsible for very a pronounced optical response in colloidal
solutions even in small concentrations, the spectroscopic characterisation of single nanoparticles is
faced with the difficulty of locating the individual particle that is much smaller than the resolution
attainable with conventional optics. e invention of the technique of dark- eld microscopy is
attributed to Zsigmondy who performed studies of metallic nanoparticles in colloidal solutions in
the beginning of the 20th century [5]. e technique allows to observe single metallic particles of
a size down to a few tens of nanometres, by simply adapting an ordinary microscope [6]. In the
past few decades, the improvement of the fabrication techniques have triggered a renewed interest
in the study of individual nanoparticles. e dark- eld microscope was coupled to a spectrometer
by Schulz [7] and Feldmann [8] (2000) which opened the way to quantitative comparison of the
particle geometry and spectral response.

e single particle study provides information that cannot be obtained from a collection of
particles. e dispersion of shapes and sizes (apparent in gure 4.3) leads to a convolution of op-
tical properties such as inhomogeneous broadening of the resonance linewidth, andmixing ofmul-
tiple resonances. Further, particle-to-particle interactions can modify the response of the sample
in several ways as will be discussed in chapter 5. e ability to study an isolated nanoparticle is
therefore a great advantage to unravel the physics of the excitation of LSPRs [8].
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4.2 Optical characterisation

Alternative techniques
Several techniques have been developed to observe the optical response of objects at themicro-

scopic scale. Among these techniques, the Scanning Near eld Optical Microscopy (SNOM) uses a
near eld probe — typically a tip such as the sharpened end of an optical bre, to retrieve inform-
ation about the near eld structure around the particle of interest [9, 10]. Confocal microscopy
has been used [11, 12] to measure the extinction spectrum of a single nanoparticle. A variation
of the dark- eld microscopy experiment uses the evanescent illumination of the light in total in-
ternal re ection to excite a scatterer of interest deposited on a prism [13]. e light that is collected
has been converted from evanescent wave to a propagating wave by the scattering object. e in-
terpretation of the spectra obtained in this con guration is more difficult due to the excitation by
inhomogeneous plane waves [14]. e need for total internal re ection also limits the range of ap-
plicability of the technique in terms of angles of incidence and environment of the particles under
study (there needs to be a sufficient index contrast between substrate and superstrate). Finally, the
use of uorescent dyes [15], second-harmonic generation [16], and Raman spectroscopy [17] have
been applied to the study of plasmonic nanoparticles.

In this thesis I used dark- eld spectroscopy as a means to characterise the scattering response
of single particles. e main advantage of the technique is the simplicity of the setup (described
below). It also offers the advantage of being a non-intrusive probing technique that does not ne-
cessitate the introduction of a near- eld probe that could modify the scattering properties of the
particles.

4.2.1 Dark- eld microscopy

Light from awhite source is focussed down onto the sample with a dark- eld condenser that blocks
the light at small angles of incidence. e resulting hollow cone has a semi-angle ranging from
65 −75°. e collection objective has a smaller numerical aperture, therefore no direct light is
transmitted from the illumination to the collection path. In the presence of a scattering object, the
objective collects a portion of the scattered light, which is fed to a spectrometer. A typical dark-
eld image is shown in gure 4.5. e dark background is a most recognisable characteristic of the

technique: in the absence of a sample, no light is collected. It is of primary importance to ensure
an optimal cleaning of the substrate at every step of the lithography process. Any dust particle,
on either side of the substrate, will result in a unusable part of the sample. Such problems are
apparent in the gure: in (A) a gold ake of dimensions around a few microns landed near the
region of interest and causes a very bright scattering in DF microscopy. If it were present on an
array of particles, they would be unusable. Similarly, (B) illustrates the effect of a dust particle that
remains in the opposite side of the substrate. It is out-of-focus, but as the sample thickness is only
100 µm, the diffraction pattern is clearly visible in the form of Airy rings. Again, such a defect near
the particles under investigation would compromise any spectroscopic characterisation. In (C)
we recognise large labels (arrows) that are drawn to easily locate the arrays. e disc is a so-called
‘contamination spot’ that remains from focussing the e-beambefore exposing the arrays. (D) is a set
of 5×3 arrays of 8×8 gold nanorods. Each array differs in the nominal sizes and dose, therefore an
increase in scattering intensity is noticeable from right to le (smallest to largest nominal volume)
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collimated beam

dark-�eld
condenser

nanoparticles

100x oil immersion
objective

glass substrate

spectrometer

polariser slit
(top-view)

polariser 

Figure 4.4: Schematic view of a dark- eld spectroscopy setup. Inset: a cache with a narrow slit
opening is used to restrict the incident light to two incident beams with s-polarisation. e dark-
eld condenser blocks a portion of the incident light and focusses the light onto the sample. e

resulting hollow cone of light is focussed onto the region of interest of the sample. Any light that is
collected by the objective must have undergone scattering by the sample. is scattered light is fed
to a spectrometer.

and from top to bottom (smallest to highest dose). (E) is a set particle arrays with 2 µm separation
used to study the effect of inhomogeneous broadening (subject of chapter 5). (F) is a set of 5 arrays
of gold nanorodswith periodicities ranging from300 nm to 700 nm. ese arrays have a periodicity
commensurate with the wavelength of visible light and act as diffraction gratings for the incident
light, producing a strongly coloured response in the limited collection angle of the objective. Such
arrays will be studied in detail in chapters 6,7,8.

4.3 Results on gold nanorods

Two gold nanoparticles of different dimensions will support LSPRs that differ in frequency, intens-
ity, and quality factor [7]. In analogy with a radio-antenna, the length of the particle will dictate the
frequency of radiation, and the characteristic loss controls the efficiency of coupling to radiation.
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(F)

(D)

(C)

(B)

100µm

(A)

(E)

Figure 4.5: Dark- eld image overview (real colours). (A): gold ake remaining aer the li-off
process. (B): Airy rings due to the diffraction of light by a dust particle on the opposite side of the
substrate. (C): contamination spot and markers. (D) arrays of isolated nanoparticles with varying
sizes and dose. (E): small arrays of isolated particles. (F): diffractive arrays of varying periodicity.

An increase in the aspect ratio of nanorods leads to a red-shi of the LSPR associated with the long-
axis of the particle ( gure 3.3, chapter 3). Further, the intensity of the scattered light increases with
decreasing frequency as the refractive index of gold offers a larger contrast with the surrounding
environment (increased impedance). e resonance width has a more complicated dependence
upon the aspect ratio and the volume of the particles as several physical effects contribute to the
broadening of the resonance.

To better understand and characterise these phenomena, a large number of nanorods were fab-
ricated, enabling us to nd a correlation between the geometry of the particles and their scattering
response. A set of 40 SEMs is shown in gure 4.6. Each row consists of nanorods with a constant
nominal size of the short axis, while the long axis is increased, starting from a 1 : 1 to 1 : 3 aspect
ratio. e height of the particles is held constant (at 35 nm), as these particles were fabricated on
the same substrate with a small separation (5 µm between particles).
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4.3 Results on gold nanorods

100 nm

Figure 4.6: Scanning electron micrographs of 40 individual nanorods (the separation between
particles has been trimmed for clarity). Each column of 8 nanorods was designed with a com-
mon nominal value of the short axis, and a long axis increasing up to an aspect ratio of 2:1. e
colours identify 3 particular studies, namely: (i) in blue, three small nanorods illustrate the shi
of the LSPR due to an increase in the long axis of individual nanorods ( gure 4.7); (ii) in green, 3
larger nanorods demonstrate some difficulties in isolating the resonance associated with the short
and long axis of these slightly irregular shapes ( gure 4.8); (iii) in red two particles with a com-
mon value of the short axis but a very different volume are used to illustrate the effect of radiative
damping in the quality factor of LSPRs ( gure 4.15)
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4.3 Results on gold nanorods

4.3.1 Tuning the resonance position of gold nanorods

Figure 4.7 illustrates the shi in resonance frequency as the length of a gold nanorod is increased.
e experimental scattering spectra (lower panel) were obtained with a polariser set before the
dark- eld condenser, with a slit to restrict the incident light to a polarisation in the plane of the
sample, along the long axis of the particles (inset of gure 4.4). A long acquisition time (∼ 5mins) is
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Figure 4.7: Dark- eld scattering spectra of individual nanorods (approximate ellipsoids of semi-
axes 74 nm×50 nm×22 nm, 86 nm×56 nm×22 nm, 96 nm×54 nm×22 nm) in oil immersion envir-
onment (n = 1.5). (Bottom) Experimental scattering spectra from three nanorods (SEMs shown
in inset). (Top) Simulated scattering spectra (T-matrix method from [18]) for gold ellipsoids with
the dimensions retrieved from the SEMs. e solid lines present the result with a bulk permittivity
from [19], the dashed lines include a surface scattering correction discussed in 4.3.2.1.

necessary to collect sufficient light in these conditions. enoise level is still high, particularly at the
edges of the spectral window where the light bulb has a low emission. For the three spectra shown
in the bottom panel, the short axis of the particles is almost constant. e correlation between the
LSPR position and the aspect ratio of the particles is clear: the LSPR is red-shied by increasing the
length of the long axis. is is in good agreement with the theory discussed in chapter 3 whereby
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the aspect ratio of the particle dictates the depolarisation eld acting on the charge density. A lower
depolarisation eld implies a lower restoring force, leading to a lower resonance frequency. As a
comparison, the top panel presents the calculated spectra obtained with T-matrix modelling of
ellipsoids whose dimensions were retrieved from the SEM measurements. e spectral position
and relative height of the resonances is qualitatively well reproduced, and it is worth noticing that
there is no free parameter that has been adjusted. e light intensity as measured in our dark- eld
con guration is arbitrary as the normalisation uses a diffuser to retrieve the spectral dependence
of the lamp. e main difference between the model and the experimental data is the smoother
spectral lineshape in the modelling, that assumes a perfectly ellipsoidal shape for the scatterer and
an ideal state of polarisation for the incident light (plane wave with polarisation along the main
axis). A small peak may be observed at a wavelength of about 600 nm, although the data are noisy,
and could be attributed to the excitation of a resonance along the short axis of the particles. In
addition to this marginal discrepancy, the resonance width is narrower in the model. A plausible
cause for this discrepancy is the inadequate dielectric function that does not account for size-related
damping mechanisms such as surface scattering (see section 4.3.2.1). In dashed lines in gure 4.7
the same model was run with a dielectric function modi ed to account for this additional damping
mechanism. e main effect is to reduce the quality factor of the LSPR, introducing a ∼ 20 nm
broadening of the resonance, in better agreement with the experimental data.

e situation depicted in gure 4.7 is somewhat simpler than the typical spectrum retrieved
from LSPR-supporting nanoparticles, however, where the spectral overlap of multiple resonances
complicates the interpretation of the scattering response [20]. In gure 4.8 a similar study is made
for larger gold nanorods. Both long axis (blue curves) and short axis (red curves) resonances are
probed for particles of increasing aspect ratio (SEMs as insets). We observe that as the long axis
becomes longer than the short axis, the two LSPR initially occurring at a similar wavelength be-
come separated. However, the presence of the LSPR associated with the other axis is always present
and results in a more irregular lineshape. Such polarisation conversion may occur because of the
shape irregularity, and the lack of precise control on the illumination conditions. is mixture of
resonances is almost always observed and hinders the interpretation of the spectral response in
correlation to the particle morphology [20]. An additional complication arises when the particle
size approaches 200 nm, as higher order multipolar modes can substantially contribute to the scat-
tering response. It has also been demonstrated in the literature [21] thatmore irregular shapes such
as triangular nanoprisms can exhibit high order resonances at smaller aspect ratios, due to the dis-
tortion of the eld lines increased around sharp corners. In gure 4.9 I illustrate this effect with the
scattering spectra of four individual gold nanoprisms. We can see that the precise morphology of
the triangular cross section can affect the relative intensity of the two main resonances observed.

4.3.2 Understanding the damping of LSPRs

In gure 4.7, it can be observed that the width of the LSPR is sensitive to the precise shape of the
particles. e effect of surface scattering was included to try to obtain a better agreement between
the numerical modelling and the experimental data. I will now discuss the different mechanisms
that contribute to the width of the LSPR in isolated particles.
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Figure 4.8: Dark- eld scattering spectra of individual nanorods in oil immersion environment (n =
1.5). A polariser was used in the illumination path to selectively probe the short axis (blue) and
long axis (red) of the nanorods.

e linewidth of the LSPR has generally received less attention than the position of the reson-
ance [8]. is is because a comprehensive survey of the LSPR linewidth is affected by the follow-
ing difficulties: (i) inhomogeneous broadening in a collection of particles affects the width of the
spectral features ; (ii) individual, small particles scatter little light and are difficult to observe in
dark- eld; (iii) the linewidth is affected by a combination of factors that are of similar magnitude
for particles in the range of sizes 10 nm–100 nm; (iv) to be easily interpreted, the scattering spec-
trum needs to present only well-de ned resonances, whereas most particles display a combination
of resonances when no special attention is paid to the polarisation of the incident light and the
aspect ratio of the particles ( gure 4.9).

A single particle such as a gold nanorod excited with light polarised along one axis can present
a well de ned LSPR lorentzian lineshape in its scattering response ( gure 4.7). For such a case,
the dependence of the spectral linewidth on the particle composition and geometry can be de-
composed into three contributions. (i) e bulk material properties — the plasmon population
suffers a loss mechanism that is described in the phenomenological dielectric function, it is linked
to the scattering rate in the Drude model and interband transitions. (ii) e surface of the particle
can increase the dephasing of the plasmon population, this effect is especially important for small
particles where the ratio volume / surface is comparable to the mean free path of the Fermi elec-
trons. (iii) e radiation of light from the moving electrons in the particle causes a reaction force
that dampens the electrons — this is the radiative damping, which is an important contribution for
large particles.
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Figure 4.9: Dark- eld spectra from four individual nanoprisms. e nominal in-plane shapes were
identical triangles. e resulting SEMs are shown in the inset.

4.3.2.1 Intrinsic damping

In this section I will discuss how thematerial properties of gold affect the width of the LSPR. When
considering small particles (below∼ 40 nm), radiative damping can be neglected, and experimental
results from Sönnichsen et al. [8] suggest the relative independence of the width for gold nanorods
of varying aspect ratio, as shown in gure 4.10. e open squares show the observed dependence
of the LSPR width as a function of the resonance peak energy. ese data were obtained by meas-
uring the scattering spectrum of small gold nanorods of increasing length, and tting a lorentzian
lineshape to extract the LSPR position and width. e LSPR is red-shied for nanorods of increas-
ing aspect ratio, and the width is seen to decrease for the more elongated rods. e open circles
were obtained in the same study for gold spheres. e resonance width of the small gold nanorods
is noticeably narrower than for the spheres. Such an improvement in the quality factor of LSPRs is
of great practical importance in applications such as non-linear surface enhanced processes (SERS,
uorescence) [22, 23], lasing [24], and plasmon-mediated propagation of light [25, 26].

Ignoring for now the in uence of surface scattering, the resonance width of small nanoparticles
is dictated by the material properties of gold, expressed in the dielectric function. e resonance
width corresponds to a spread of energies for the plasmon population. For simplicity I will consider
the case of small nanorods that can be adequately modelled as dipoles according to the formulas
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Figure 4.10: Damping in dipolar resonances. e solid line shows the damping calculated from
equation 4.3 for gold (permittivity values from Johnson and Christy). e dashed line is the res-
ult obtained from Mie theory for gold spheres (surrounding index 1.52). Open symbols are single
particle measurements on colloidal nanorods and spheres from [8]. e two red lines are the cal-
culated width of LSPRs obtained by modelling scattering by small prolate ellipsoids (equivalent-
volume radius: 10 nm) of increasing aspect ratio, using two different permittivity values: a modi-
edDrudemodel with andwithout a correction for the shape-dependent effect of surface scattering

(solid and dashed lines respectively).

presented in chapter 3. From equation 3.22, the polarizability of such a particle reads,

α=
ab c

3

ϵ− ϵd

ϵd +L(ϵ− ϵd )
. (4.1)

e Fröhlish resonance frequency is obtained as a pole in the polarizability — the frequency for
which the system may undergo natural oscillations independently of an external perturbation. e
frequency corresponding to this pole is complex, the system will have a resonance when the real
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frequency approaches the condition,

ϵ =
Lϵd

1+L
. (4.2)

It is clear from equation 4.2 that a atter dispersion of the dielectric function ϵ around the condi-
tion ϵ = Lϵd /(1+L) will result in a broader range of frequencies for which equation 4.1 diverges:
the resonance width therefore depends on the slope of the dielectric function around the Fröhlish
frequency.

e loss of energy in the form of Joule heating is also responsible for the intrinsic broadening
of the LSPR: it is a general property of oscillators such as an optical cavity that the width of the
resonant mode increases with the energy loss. e Joule heating is proportional to the imaginary
part of the dielectric function (equation A.7). e resonance width due to this intrinsic property
of the material is expressed as,

Γ=
2ϵ′′Ç�

d (ϵ′)
dω

�2
+
�

d (ϵ′′)
dω

�2
. (4.3)

Equation 4.3 was rst derived for spheres in the quasi-static regime by Kreibig [27].Wang and Shen
derived a similar expression for general metal/dielectric nanostructures [28] in the quasi-static
limit. A similar expression has not yet be obtained for general LSPR-supporting particles beyond
the quasi-static approximation [29], and this may lead to novel ways to overcome the intrinsic
broadening of the LSPR [30]. In equation 4.3 we recognise the ratio of the energy loss in the form of
Joule heating (imaginary part of the permittivity) to the energy stored in a metal/dielectric system.
e strongly dispersive nature of gold at optical frequencies must be considered in the expression
for the energy density u [31, 32],

u =
dωϵ

dω
|E|2. (4.4)

As a further physical insight into equation 4.3, we note that the dispersion of the real part of the
dielectric function is naturally linked to the imaginary part through the Kramers-Kronig relations,
that is the absorption of a material is correlated to the dispersion at other frequencies.

e resonance width corresponds to a characteristic dephasing time in the time domain. e
‘particle plasmon’ mode is formed of a coherent oscillation of the charges in the particle, and the
spectral broadening can be attributed to a loss of coherence in the electron population. Insofar
as only the intrinsic damping contribution is considered, two main processes can contribute to
the loss of coherence of the LSPR. First, the electrons can suffer collisions with phonons as they
travel in the particle, which accounts for the collision with impurities, grain boundaries, etc.. is
effect is temperature dependent [33]. Second, the plasmon population may suffer intraband and
interband transitions in the form of exciton states. is contribution is known as Landau damping,
for Landau rst gave the mathematical description of the loss of energy of a wave in a system with
multiple charges in relative motion. e result of this analysis is that the wave (here, the EM eld
associated with the surface plasmonmode) loses energy to the charged particles that have a velocity
comparable to the group velocity of the wave. Because the localised plasmons have a low group
velocity, this process is an important cause of dephasing in gold nanoparticles.
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e variation of equation 4.3 with respect to the resonance energy is plotted as a blue line in
gure 4.10. is material limit describes very accurately the damping in small particles, where the

radiative damping is found to be negligible. e small discrepancy between the width obtained by
numerical modelling of small nanorods and from equation 4.3 can be attributed to several factors:
the half-width of the resonances is not always accurately retrieved from a lorentzian t; the per-
mittivity of the evaporated gold is not accurately known (in place of experimental values for the
dielectric function, an extended Drude model has been used in the numerical modelling to be able
to introduce the additional damping mechanism of surface scattering).

Equation 4.3 describes the in uence of the real and imaginary part of the dielectric function on
the width of the LSPR. Because gold presents a strong departure from an ideal Drude metal in the
high energy side of the optical range, it is interesting to study the simpler case of a Drude material
(section 2.2.3), which we describe by the approximate formulae (γ≪ω,ωp ),

ϵ′ = 1− ω
2
p

ω2 , ϵ′′ =
ω2

pγ

ω3 , (4.5)

withωp = 1.35×1016 rad/s, γ= 1.25×1014Hz as a best t for gold in the visible.
Inserting these expressions in equation 4.3 yields Γ = γ, as expected: the intrinsic width of

the LSPR is inversely proportional to the scattering time of the electrons in the Drude model. In
gure 4.11 we assess the in uence of the damping constant γ in the Drude model: increasing val-

ues of γ give broader resonances that are mostly independent of the resonance energy. A small
departure from this constant value is seen in the highest value of γ, the resonance width slightly
decreases in the near infra-red. is effect is due to the larger curvature in the imaginary part
than in the real part of the dielectric function with the parameters used for this simulation. e
value γ= 1.128×1014Hz gives a very good approximation of the width for gold particles having a
resonance away from interband transitions.
Surface scattering

e parameter γ can be altered in a variety of ways. On a microscopic scale, γ is the inverse
of the scattering rate that describes the dephasing of the electrons due to interactions with phon-
ons, and with impurities. In particular, a thin metal lm will present a higher value of γ due to
the modi cation of the bulk permittivity by the presence of the interface, when the thickness be-
comes commensurate with the mean free path of the electrons in the bulk L∞. is mean free path
can be evaluated from the Drude damping parameter γ as L∞ = A v

γ
≈ 11nm, where A ≈ 1 is a

phenomenological constant characterising the detail of the scattering process of the electrons, and
v = 1.4×106m/s is the velocity of the Fermi electrons in gold. e effect of surface scattering
on the mean free path is particularly important in small metal particles, where this time the entire
shape may be smaller than the mean free path in all directions. A simple way to account for this
increased intrinsic loss is to characterise the modi cation of γ in terms of the shape of the particle.
Schatz et al. [34] derived a simple general expression for this effective mean free path by consider-
ing the average cord length in arbitrary geometries, the result of which is very simply summarised
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Figure 4.11: Intrinsic damping in gold and in the Drude model. Four different values of the damp-
ing parameter γ are considered, with γ= 1.128×1014Hz (= 74meV) being the best t of the Drude
model to the permittivity values of gold from the literature in the wavelength range 0.7–1.2 µm.

as the ratio volume/surface of the particle,

Leff = 4
V

S
. (4.6)

is geometrical parameter is shown in gure 4.12 for oblate and prolate ellipsoids of varying
volume and aspect ratio. In the limit of extreme aspect ratio, Leff → 0, and for a given volume
the smallest modi cation to the mean free path is obtained for a sphere that minimises the ratio
surface/volume. We note that the smaller particles are the most sensitive to this effect for small as-
pect ratio as we consider in nanorods. In ellipsoids, the increase of surface area is almost linear in
the increase of volume (the curves have almost a constant spacing for all aspect ratios). It should be
noted, however, that the description of the shape as an idealised ellipsoid is likely to be inaccurate
as the fabrication technique used here (EBL) leads to a grain structure with appreciable roughness
(see gure 4.6).

85



4.3 Results on gold nanorods

aspect ratio

L e
ff /

 n
m

11

0

20

40

60

10 9 8 7 6 5 4 3 2 1

oblate

2 3 4 5 6 7 8 9 10

L∞

prolate

equivalent
radius / nm

5
10
20
30
40
50

Figure 4.12: Effective mean free path parameter for oblate (le) and prolate (right) ellipsoids as a
function of the aspect ratio.

As a result of this reduced mean free path, the dielectric function suffers an increase in its
imaginary part,

γ= γ0+
AvF
Leff

, (4.7)

where γ0 is the damping parameter of the bulk material, A is a phenomenological constant of the
order of unity, and vF is the Fermi velocity. An illustration of the effect of nite size on the dielectric
function is shown in gure 4.13 for Leff = 25nm, a typical value of the small nanorods considered in
this work. We note that the main effect of the limitation in the mean free path due to the restricted
size of the particle is to increase the imaginary part of the dielectric function (causing an increased
absorption) and the real part of the refractive index (reducing the index contrast, therefore allowing
a larger portion of the EM eld to penetrate in the metal). e real part of the dielectric function
and the imaginary part of the refractive index are largely unaffected.

In order to maintain a correct description of gold throughout the visible, a modi ed Drude
model has been used, following the study by Etchegoin et al. [35]. e effect of increasing γ is
straight-forwardly included in thismodel, and can be compared to themeasured values tabulated in
the literature (Johnson andChristy ). We see the effect of surface scattering in the scattering spectra
of gold nanorods in gure 4.14. ree families of prolate ellipsoids are shown for comparison, the
particles differ in volume (top, middle, and bottom panels) and aspect ratio (colours). e bulk
dielectric function was used to calculate the scattering cross-section shown by the dotted lines,
while the solid lines are the result of the calculations with a shape-dependent correction to the
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Figure 4.13: Dielectric function of gold with a contribution from surface scattering (equation 4.7,
with Leff = 25nm).

dielectric function obtained from equation 4.7. e main effect of the surface scattering correction
is that the resonance is weakened and broadened by the increased loss in the metal. We note that
this effect is more pronounced in the smaller particles, and the particles with higher aspect ratio.

In addition to modifying the dielectric function through the mechanism of surface scattering,
the shape and size of a scatterermodi es the radiative damping contribution to the LSPR linewidth:
in gure 4.14 the linewidth increases as a function of volume and aspect ratio of the particles. is
is the subject of the next section.

4.3.2.2 Radiative damping

e electrons moving inside the particle radiate light, and this forms an additional loss channel for
the plasmon mode that is proportional to the number of accelerated charges, i.e., the volume of the
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Figure 4.14: Simulated scattering spectra of gold nanorods of different volume and aspect ratio.
e equivalent volume sphere is of radius 10nm, 20nm, 30nm. For each family three aspect ratio
are considered: 1 (sphere), 1.5, and 2 (polarisation along the long axis). e solid line uses the bulk
permittivity values, and the dashed lines consider a size-dependent surface scattering correction
(equation 4.7).

particle when the skin depth is larger than the particle size. In gold nanoshells, the reduced volume
of metal compared to a solid sphere has been shown to substantially reduce the effect of radiative
damping [36]. e effect of radiation damping on the resonance can be seen in the modi ed long
wavelength approximation for dipolar resonances (equation 3.28),

αmlwa =
αstatic

1− 2
3 i k 3αstatic− k 2

a α
static

, (4.8)

e static polarizability of the particle is corrected by the term 2
3 i k 3αstatic that describes the radi-

ation of light.
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e volume and aspect ratio of the particle can therefore in uence the resonance width by
changing the resonance frequency (k 3 factor), and the value of the static polarizability (a function
of the volume, shape factor, and surrounding environment). Appendix B describes the modi ca-
tion of the scattering spectrum for an effective polarizability of the form equation 4.8 and predicts
a red-shi and broadening of the LSPR. is dependence was investigated for gold nanorods, as
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Figure 4.15: Dark- eld scattering spectra of 2 individual gold nanorods in 1.52 surrounding index.
e two nanorods have the same height (30 nm) but different in-plane axes as indicated in the
legend. e polarisation of the incident light is along the short axis.

illustrated in gure 4.15 which presents the dark- eld spectra of two nanorods with incident polar-
isation along the short axis of the particles. e observed resonance occurs at a similar wavelength
(slightly blue shied for the particle with a longer long axis, as expected from the consideration
of the depolarisation factor associated with the short axis), but the intensity and quality factor are
very different. e larger particle (longer long axis) exhibits a more intense (∼ ×2) and broader
resonance (120 nm against ∼ 100nm). In general, the resonance intensity and width will also vary
as the resonance position is modi ed by the size and shape.

Radiative damping is proportional to the total dipole moment of the particle — therefore pro-
portional to the particle volume, and inversely proportional to the cube of the wavelength. As
a result it is clear that gold spheres present a much broader resonance than elongated nanorods
(ignoring the effect of surface scattering), as the Mie resonance suffers a much smaller shi with
increased diameter than a rod stretched along one axis to the same linear dimension. It is difficult
to assess the effect of radiative damping alone by seeing the effect of particle size, as the resonance
shis to the red for larger and more elongated particles.
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Figure 4.16: T-matrix model of gold ellipsoids with a constant volume and a range of aspect ratios,
in surrounding medium of index 1.5. e equivalent-volume spheres have for radius 10 nm (top
panels) and 50 nm (bottom panels). e extinction, scattering and absorption cross-section are
shown for the calculation using bulk permittivity and a size-dependent surface scattering correc-
tion.

To investigate the effect of radiative damping on the resonance width, several simulations have
been run for prolate ellipsoids of constant volume and increasing aspect ratio. e result of these
simulations is a set of scattering and absorption spectra, a few ofwhich are shown in gure 4.16. e
effect of increasing the volume of a gold nanoparticle in the formof a prolate ellipsoid is investigated
for different aspect ratios (colours) and two different volumes (top vs bottom panels). e clear
effect of increasing the volume of the particle from a 10 nm equivalent radius sphere to 50 nm is a
large increase in the cross-sections (note that the scale is very different). A larger aspect ratio also
leads to an increase in the cross-sections, and to a larger red-shi of the LSPR associated with the
long axis of the rod. e10 nm-volumeparticles have an optical response dominated by absorption:
the scattering albedo σsca/σabs is much smaller than unity, while it is much greater than one for
the 50 nm-equivalent volume particles. e transition from a regime where absorption dominates
to the regime where scattering dominates lies in the range of sizes considered in this thesis (about
50 nm, depending on the surrounding environment). It is interesting to note that the absorption
edge feature observed in thin lms (chapter 2, 2.7) is mostly unaffected by the shape and size of
a particle, as it is an intrinsic (bulk) loss mechanism. Because the scattering and absorption are
linked by the relation [33]

σsca =
γrad
γnr
σsca, (4.9)
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Figure 4.17: Scattering cross-sections calculated from a T-matrix model of gold ellipsoids in 1.5
surrounding index. e particles have a constant volume and a range of aspect ratios (1:1, 1:1.5,
1:2). Two orthogonal polarisations of the incident light are shown in different colours (light polar-
ised along the long axis in red, blue for the short axis). Two sets of permittivity values have been
considered (bulk: dashed lines, surface scattering correction: solid lines).

the shape of the absorption edge strongly constrains the scattering response for particles with a
small aspect ratio.

An alternate view of the simulated data is presented in gure 4.17 where only the scattering
spectra are displayed for two orthogonal polarisation states. Here it is clearly observed that the
volume of the particle affects the resonance width and intensity. e short axis resonance is blue-
shied and weakens with increasing aspect ratio as the volume of the particles is held constant in
this simulation.

From these families of simulated spectra with constant volume, the half-width can be extracted
by a Lorentzian t and the result is reported on gure 4.18 which summarises this study of the
resonance width of dipolar localised surface plasmon resonances.

e dipolar resonance extracted from theMie solution is plotted as a dot-dashed line and shows
a strong increase of the LSPR linewidth with increasing diameter. is conclusion is veri ed by the
experimental data (open circles). In contrast, small nano-rods (open squares) show a narrowing of
the LSPR with increased aspect ratio — this is due to the strong red-shi of the LSPR away from
the absorption edge of gold (gold is a better Drude metal in the near-IR). e linewidth for these
small particles is limited by the intrinsic properties of the material (Landau damping). Very small
particles suffer an increased loss mechanism in the form of surface scattering, which is volume
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Figure 4.18: Width of dipolar resonances: summary of results for small gold nanorods. e dot-
dashed line is from theMie theory (dipolarmode only). e vertical solid line indicates the Fröhlish
frequency ϵ = −2ϵd . e coloured curves correspond to the numerical simulations of prolate el-
lipsoids of different volumes (colours), for two polarisations (solid symbols) and two prescriptions
for the dielectric function (bulk — solid lines, surface scattering correction — dashed lines). e
open symbols are experimental data from [8].

and shape dependent. For nanorods of intermediate geometry between very small rods and large
spheres, there is an optimum region where the effect of surface scattering is almost negligible, and
the radiative damping is also reduced by a red-shi of the LSPR [20]. In this regime the radiative
damping leads to a general increase of the resonance width with respect to the smaller particles, but
the effect of the surface scattering becomes less important (compare the dashed lines with the solid
lines for different colours). e short-axis resonance of the prolate nanoparticles is however always
blue-shied and broadened by increasing the aspect ratio of the particles. In the limit of a very
narrow rod (very large aspect ratio) the short-axis LSPR tends towards the limit ϵ =−2ϵd which is
the minimum possible Fröhlish frequency for particles of this geometry in a dielectric medium of
permittivity ϵd .
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4.4 Conclusions

In this chapter the fabrication technique of electron-beam lithography was used to fabricate gold
nanoparticles of various shapes and sizes. e optical response of individual particles was char-
acterised by dark- eld spectroscopy. A study of the in uence of the precise particle morphology
was performed by comparing the scanning electron micrographs of several particles and the scat-
tering spectra obtained from the same particles. e study of gold nanorods revealed a number
of characteristics of the dipolar response of gold nanoparticles. First, the size and aspect ratio of
the particle dictates the spectral position of the LSPR. is tunability can be used to red-shi the
LSPR from the static Fröhlish frequency for spheres where gold presents a strong absorption. e
resonance gains in strength as it is shied towards the infra-red. Second, the rough composition of
the particles fabricated by thermal deposition of gold leads to the excitation of a mixture of reson-
ances for particles larger than ∼ 50nm. e lineshape presents a combination of resonances that
reveals a polarisation conversion. In this respect a study of individual nanoparticles obtained by
colloidal growth would provide a useful comparison as these particles present a perfectly regular
shape and a mono-crystalline structure [20]. e importance of surface roughness and end-cap
geometry in the precise description of the LSPR was studied by Mulvaney et al. using the Dis-
crete Dipole Approximation [37]. Last, the resonance width was studied for different ranges of
particle sizes. e smaller nanoparticles are shown to exhibit an intrinsic limit for the width of
the LSPR that is due to the material properties. e experimental data from Sönnichsen et al. was
found in good agreement with the analytical formula for the material contribution to the damping.
Using the Drude model we found that the LSPR width is equal to the damping parameter of the
Drude model, which provides a good approximation for the observed resonance width away from
the region of interband transitions. e shape and size-dependent effect of surface scattering was
assessed with an evaluation of the effective mean free path in ellipsoidal particles. e resulting
size-dependent dielectric function was used in simulations for nanorods of varying sizes and res-
ulted in weaker and broader resonances in better agreement with the experimental observations.
For smaller particles, the effective mean free path reduction due to the nite size of the particle is
not sufficient to describe the optical response of gold nanoparticles. A non-local description of the
dielectric function may be necessary [38] to provide a more accurate description of the material
response. is limitation also applies to the case of strongly interacting particles.

Finally, it should be noted that the single particle studies in this thesis have been focussed on
particles supporting only dipolar resonances. Larger nanoparticles [30], nano-stars [39] and nano-
rings [40] have been shown to display interesting optical properties that result from the excitation
of higher order resonances.

e study of the dipolar response of small gold nanorods has given us an insight into the optical
properties of isolated LSPR-supporting particles. In the next chapters I will present experiments
where the optical response of such particles is modi ed by the arrangement of the particles in a
two-dimensional array.
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“Il faut souffler sur quelques lueurs pour faire de la bonne lumière.”
René Char 5

Extinction measurements in a collection of
particles

W    - metallic nanostructures are in close proximity
the possibility exists for interaction between the modes of the individual nanostructures

to form new hybrid modes [1–3]. In chapter 4 we observed that gold nanoparticles present a very
strong scattering response in the visible, it is therefore expected that particle interactionswill play an
important role in a dense collection of particles. e case of two interacting particles with varying
separation has been extensively studied (for example see [4]). For multiple nanostructures there is
also the possibility of long-range coherent interaction arising from multiple scattering, something
that may nd application in energy transport [5, 6], slow light [7–9], and sensing [10, 11]. is
situation will be investigated in chapters 6,7,8.

e optical response of a collection of particles can be understood with different approaches
that depend on the geometrical arrangement, density, and individual particle properties. In the
limit of very tenuous collection of particles (large separation), the optical observables such as cross-
sections are a linear superposition of the individual particle responses. When the average distance
decreases, however, interactions between particles can lead to dramatic changes in the overall scat-
tering and extinction properties of the cluster because each particle responds to an electromagnetic
eld that comprises the contribution of the light scattered by the neighbouring particles. Such

interactions between particles are particularly important to consider when at least one of the fol-
lowing conditions is met: (i) the eld incident on each particle has a non-negligible component
arising from light that was scattered by another particle; (ii) the arrangement of the particles has a
periodicity that encourages the build-up of such multiple scattering events. In this chapter I will
present the experimental study of the transition between a disordered and ordered collection of
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5.1 Fabrication techniques

particles in a 2-dimensional con guration in the regime where the particles can have a relatively
strong near- eld interaction.

First, a review of fabrication techniques is given, with a description of nanosphere lithography
and the formation of islandised lms by thermal evaporation. e observation and interpretation
of inhomogeneous broadening of the LSPR in collections of particles is discussed in the study of
EBL samples. Second, a coupled dipole model is introduced that describes the essence of the elec-
tromagnetic interaction for neighbouring particles. Last, this study is followed by an investigation
of the effect of particle proximity, overlap, orientation, and density on the transmission spectrum
of the sample. e experiments that are presented also compare the bulk index sensitivity for the
different geometrical con gurations.

5.1 Fabrication techniques

In addition to the procedure of electron-beam lithography presented in chapter 4, several comple-
mentary techniques have been used and will be introduced in this section.

5.1.1 Islandised lms

Figure 5.1: Scanning electron micrograph of an islandised lm. e substrate is glass, and gold
(purity 99.99%) was evaporated at a rate of ∼ 1Å/s to an effective mass-thickness of ∼ 5 nm under
vacuum (P = 2×10−6T.) e gold appears as light areas on a dark background (substrate).

Perhaps the simplest fabrication technique to produce a collection of nanometre-sized metallic
particles supported on a substrate is the formation of islandised lms by thermal evaporation [12].
e nucleation kinetics of thinmetallic lms involve a process of diffusion of the depositedmaterial
at the surface of the sample. While thermalising at the surface, the deposited clusters of gold seek
a state of minimum energy. Surface tension between the clusters and the substrate yields a partial
wetting of the glass by the gold. When two clusters in close proximitymerge, their shape rearranges

96



5.1 Fabrication techniques

to minimise the global surface tension. Such shape transformations require sufficient thermal en-
ergy: the nal con guration of the clusters therefore depends on the balance of the thermal diffu-
sion of the evaporated material, the rate of deposition, and the surface tension between the depos-
ited material and the substrate. When depositing thin lms (∼ 5 nm) of gold and silver on a glass
substrate at a pressure of 1×10−6 Torr, the deposited material forms disjoint clusters that therm-
alise as separate islands. If the deposition was continued, these xed islands would act as seeds
for the new material to join and eventually merge into a continuous layer where grains of different
orientations meet and coalesce. If, however, the deposition process is stopped, the sample consists
of a random clustering of metallic islands of typical dimensions 50 nm. Because of the absence of
freedom in the design of such samples, the lack of reproducibility and the intrinsic variability of
particle sizes using this fabrication technique, the optical studies of gold nanoparticles presented
in this thesis were performed on samples fabricated by electron-beam lithography and nanosphere
lithography.

5.1.2 Nanosphere lithography

Nanosphere lithography (NSL) is a large scale and inexpensive technique that can be used to fab-
ricate arrays of nanoparticles over large regions [13, 14]. e fabrication of nanoparticles by NSL
requires several steps, illustrated in gure 5.2.

i. Deposition of a solution of microspheres onto a substrate. Polystyrene spheres of diameter
390 nm are dispersed into a water solution with additional surfactant that prevents agglom-
eration of the spheres, and 50% of ethanol used as a solvent. e deposition is carefully made
by hand with a pipette as illustrated in gure 5.2(a). A glass slide prepared with a surfactant
is placed on a PTFE trough containing pure dionised water and the clean substrate immersed
at mid-height. All components have been thoroughly cleaned with a cycle of solvents (IPA,
chloroform, pure water) so as to avoid any contamination of the bath. e spheres are care-
fully introduced on the slide and reach the interface with the water where they form a thin
layer at the surface. e surface treatment of the slide with a surfactant (STS) is extremely
important for the surface tension to produce a meniscus that allows the spheres to migrate
to the surface of the water and not sink. A slow deposition rate is maintained so as to form
a homogeneous lm over several linear centimetres of the water surface. e spheres must
be free to rearrange at the surface and not impose stress on the lm. At the same time the
solvent evaporates and the lm becomes less ductile. A careful compromise is reached only
aer many experiments and the process is generally prone to sample-to-sample variation.
is situation could be overcome by automating the deposition process with a larger control
over environmental variables such as temperature, vapour pressure, vibrations, etc.

ii. e water is carefully drained with the free-standing lm of nanospheres oating at the sur-
face. e spheres are constrained laterally with two PTFE bars so as to maintain the integrity
of the lm during the removal of the water. When the water level reaches the substrate, the
spheres deposit on the glass surface. As the solvent evaporates, capillary forces draw the
spheres together in a close-packed array.
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5.1 Fabrication techniques

iii. When the sample is dry, the nanospheres form an hexagonal mask over the substrate (see g-
ure 5.2(b) which presents a SEM of the nanospheres arranged onto a glass substrate). Once
the solvent has dried out, the crystalline structure of the arrangement of spheres is clearly
visible by eye. e periodicity of ∼ 400nm makes the array diffractive for visible light. e
boundaries of domains with monocrystalline order present different iridescent colours ( g-
ure 5.2(c)). e best samples present mono-domains of several centimetres. e ordering
of spheres can be broken by stress during the deposition process, and the presence of defects
arising from a distribution of sizes in the solution of spheres ( gure 5.2(b)). e sample is
placed in under vacuum in an evaporator where gold can be deposited by thermal evapora-
tion ( gure 5.2(d)).

iv. e spheres can be removed by sonication of the substrate in ethanol for a few seconds. A
SEM of a resulting sample is presented in gure 5.2(e).
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Figure 5.2: Nanosphere lithography. (a): PTFE trough for the deposition of nanospheres on the
substrate. e spheres are injected from the pipette onto a glass slide. e bath contains the sub-
strate immersed in pure water. A monolayer of spheres is standing on the surface of the water. (b):
SEM of a glass substrate coated with polystyrene spheres. Several defects are apparent, due to the
presence of stress or inhomogeneities in the sphere sizes. (c): Real colours photograph of a glass
substrate coated with polystyrene spheres. e iridescence arises from diffraction by the regularly
spaced spheres. (d): SEM the sample aer the metal deposition (silver in this picture). (e): SEM of
a NSL sample aer removal of the spheres. 99



5.1 Fabrication techniques

etypicalmono-crystalline domains obtained by this semi-empirical technique arewide enough
for optical studies. e local defects in the packing of the spheres, however, have a strong in uence
on the optical properties of the nal sample as they lead to a dispersion of gold particle sizes. e
resulting NSL samples present three different defects: the grain boundaries where two regions of
different crystalline order meet; line defects associated with the disparity in the sizes of spheres;
shape imperfections in the nal particles. e triangular particles obtained by NSL have sharper
corners than similar particles fabricated using electron beam lithography, as the mask formed by
the spheres does not suffer from the limitations of resolution due to the exposure of the PMMA
resist. is effect is illustrated in gure 5.3 which presents two SEMs of a NSL sample (a) and an
EBL sample (b). Sample (a) consists of an array of nanoparticles produced by nanosphere litho-

(a) NSL + FIB 

400nm 200nm

(b) EBL

Figure 5.3: Hexagonal structures fabricated by NSL and FIB (a), and by EBL (b). e apparent
roughness in (b) is the result of a thin chromium layer (5 nm) that was deposited for imaging pur-
poses.

graphy. Focussed ion beam (FIB) milling was subsequently used to isolate an hexagonal structure
comprising six silver nanoprisms. emilling by the ion beam is an intrusive process that damages
the optical quality of the particles. First, the ion beam introduces impurities that are embedded in
the substrate and the particles. ese contaminants modify the optical properties of the substrate
and of the particles. Second, the milling process leads to a rough surface around the particles of
interest that will scatter light and compromise any spectroscopic characterisation of the particles.
Further, the milled material is scattered with high energy and affects the neighbouring particles
(partial etching leads to a rounding of the particles, and re-deposition of material on the particles
leads to further contamination). For these reasons, it was not possible to characterise the scattering
response of this sample.

Sample (b) presents an hexagonal structure fabricated by electron-beam lithography. e pat-
tern was drawn to mimic the arrangement that results from the process of nanosphere lithography
(the dimensions of the nanoprisms were retrieved from SEM and drawn onto the resist mask by the
e-beam). e comparison with gure 5.2(e) clearly demonstrates the higher quality of the triangles
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5.1 Fabrication techniques

produced by NSL over EBL. e closed-packed spheres provide a very well-de ned mask for the
metal deposited by thermal evaporation, while the resist suffers a lack of resolution discussed in
chapter 4.

NSL-fabricated samples offer the advantage of a cost-effective fabrication technique for cover-
ing large areas of a sample. e particles have a well-de ned shape with sharp corners. For the pur-
pose of characterising the optical properties of gold nanoparticles, the technique of electron-beam
lithography was however preferable as it provides more control over the particle shape, size, and
on the relative position of surrounding particles. Further, the presence of defects in NSL samples
can lead to a large variation of optical properties (see gure 5.8).

5.1.3 Other techniques

Colloidal growth is a widely used technique to produce metallic nanoparticles in solution [15–18].
Seed gold nanoparticles of typical diameter a few nanometres are introduced in a solution con-
taining Au3+ ions and a surfactant (CTAB, cetyltrimethylammonium bromide). is surfactant
acts as capping agent and allows a control over the shape of the particles, whose growth follows
preferential crystalline directions such as {001} planes in gold [17]. e concentration of ions can

Figure 5.4: TEM of gold nanorods of varying aspect ratio produced by wet chemistry (from [19]).

be used to tune the aspect ratio of the nanorods. Additionally it has been demonstrated that the
excitation of LSPR by a laser beam can be used to tune the morphology of the particles during their
growth [19]. e particles can be deposited on a substrate, however the difficulty remains of how
to control their relative positions and orientations [20].

I chose to fabricate disordered arrays using electron-beam lithography, so as to retain optimum
control and freedom over the particle sizes and particle positions. A program was developed to
produce the position lists used to expose arrays of arbitrary design. A sample shape (polygon) is
repeated and arbitrarily distorted, rotated, and positioned at speci c locations across the write-
eld, as illustrated in 5.5. In this chapter the nominal size of the particles is held constant, but the

position and orientation of the particles is varied from a regular lattice of aligned nanorods to a
disordered collection of nanorods with random in-plane orientation.

Disorder can be de ned as a breaking of symmetry from a periodic system. is departure
from the crystalline state can occur in two forms [21]. (i) e unit cell of the lattice is altered at
several locations that have no spatial correlation with the lattice. is type of disorder is termed
cellular disorder. e alteration to the motif may be a vacancy (the particle is missing); a particle
of a different size or shape, or orientation; a particle of a different material; a motif containing
more than one particle. (ii) A different kind of disorder is positional disorder where the motif is
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Figure 5.5: Illustration of a position-list with a custom speci cation of the shape (rectangle), orient-
ation, scaling, and positions. e polygons are scaled for clarity in this gure. e colours illustrate
the dose factor that will be applied during the exposure.

consistent across the sample, but the position of the scatterers is displaced from the lattice in a non-
periodic manner. e displacement may vary in amplitude and range of correlation (distinction
between long-range and short-range disorder).

In chapter 8, the effect of cellular and positional disorder will be investigated in diffractive
arrays of gold nanorods with a periodicity of order the wavelength of resonant excitation of the
LSPR. In this chapter, attention will be focussed on denser arrays, that are non-diffracting in the
visible. e comparison is made between arrays that have a strict periodicity, and arrays for which
the particles are displaced from their regular locations by an increasing amount. Figure 5.6 sketches

(1) (2) (3) (4) (5) (6) (7) (8)

Figure 5.6: Images of 8 designs of particle arrays with increasing levels of disorder. Array 1 is a
regular square array ; arrays 2–6 have an additional jitter to the x-y positions (respectively 5%,
10%, 20%, 30%, 40%) ; array 7 is an array with random x-y positions ; array 8 is a pseudo-random
con guration drawn from a Strauss point process [22] (no overlap).

a few realisations of positional disorder in arrays of particles, with a xed occupancy. e pattern
drawn by electron-beam on the resist mask can be designed to present a varying degree of disorder
in the particle positions. For a sufficiently large number of particles in the array, the assumption of
ergodicity can be made and the properties of one realisation of disorder should re ect the general
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5.2 Optical characterisation

response of many such realisations. Figure 5.6(7) and (8) are two examples of arrays where the
positions were random and pseudo-random. e distinction arises because in order to study the
positional disorder independently of the cellular disorder, careful attention must be taken so that
the particles—which have a nite extent, are not overlapping. is constraint of introducing an
exclusion zone around each particle while maintaining a low correlation in the positions of the
scatterers was achieved by using a hard core spatial point process [22, 23].e problem of designing
a point pattern that does not exhibit a regular structure and avoids clustering has been studied
extensively in a broad range of areas such as digital half-toning (the process ofmimicking grey levels
in black and white images using only black spots with varying density); Monte-Carlo integration;
the search for a state of minimum energy for a set of charges constrained in a nite domain with a
short-range coulomb repulsion between the charges, and between the charges and the border [24].

e samples fabricated by electron beam lithography consisted of arrays of nanoparticles with
a spatial extent of 35µm×35µm.

5.2 Optical characterisation

Unlike the optical characterisation performed on single particles that provides a signal of low in-
tensity, the measurement of the optical response of a collection of metallic particles can be done
with an ordinary microscope. e strong interaction of light with the particles makes it possible
to obtain a strong extinction of the light through a sample even with a low density of particles.
e measurement of transmittance through a sample is a common characterisation technique for
particle in solutions. e linear extinction coefficient obeys the Beer-Lambert law (equation 3.15)
that describes the exponential attenuation of the beam upon propagation in a dilute solution of
scatterers. e extinction coefficient is directly proportional to the extinction cross-section per
particle and the density of scatterers in solution.

e experimental measurements of the optical response of the 2-dimensional samples dis-
cussed in this chapter were performed using the setup presented in gure 5.7. A collimated beam of
white light from a tungsten lament is passed through the sample, at normal incidence. A polariser
may be placed in the path of the beam to selectively probe the extinction for a given polarisation of
the incident light relative to the particles. A ow cell can also be adapted on the illumination side
of the sample so as to monitor the response of the particles to a change of the refractive index of
the superstrate medium (section 5.5).

In comparing the measured extinction with theoretical predictions, particular attention must
be taken in the precise experimental conditions for the incident light and the collection optics. In
particular, the de nition of extinction from the optical theorem (equation 3.14) expresses the in-
terference of the scattered light and the incident light in the exact forward direction. Because a real
measurement always involves a spread of incident and collection angles, a portion of the scattered
light that is not exactly in the forward direction may be collected by the detector. is leads to an
apparent extinction cross-section that is smaller than the expected value from the theory. e con-
ditions for a true measurement of extinction are detailed by Mishchenko [25, 26] and Bohren and
Huffman [27]. e spurious effect of scattering at small angles is particularly important for scat-
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Figure 5.7: Schematic of the experimental setup for measurements of optical transmittance. e
collimated beam has a divergence of less than 0.1°.

tering structures that are large compared to the wavelength (the foward scattered light is a sharply
peaked lobe associated with diffraction). One should also ensure that the incident light is well col-
limated and forms a beam of light much wider than the scattering sample, and that the detector has
a sensitive area much larger than the scattering sample under consideration. In the experiments
detailed in this chapter, the focus is made on the general transmission properties of samples with
diverse geometrical con gurations but not on the absolute intensities. Although careful attention
was paid to observe the conditions for a true measurement of extinction, the general intensity scale
is always weaker than the extinction obtained by theoretical modelling. is spurious scaling is
independent of the study of inhomogeneous broadening that is presented in the following section.

5.3 Inhomogeneous broadening

Samples prepared by nanosphere lithography have defects intrinsic to the fabrication procedure,
and present themselves as a close-packed collection of particles. An optical measurement per-
formed on such samples therefore always involves a distribution of particle shapes and sizes whose
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5.3 Inhomogeneous broadening

optical response will contribute unequally to the average response of the ensemble. In gure 5.8
typical optical extinction and scattering spectra are presented that were obtained from a sample
prepared by NSL.
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Figure 5.8: Spectroscopy measurements from NSL sample. (Top) spectrometer image of a 5 µm
wide, ∼ 400 µm long region of a NSL sample in dark- eld scattering (not normalised by the lamp
spectral response). Note the dispersion in scattering responses across the sampled area. e vertical
dashed line indicates the approximate position of the diffraction condition for the array illumin-
ated at an angle of 65°. (Bottom) Bright- eld transmittance (dashed-line) and dark- eld scattering
spectra across different regions of the scanned area.

e top image is the scattering spectrum of a region of a typical NSL sample for a range of 256
pixels on the camera that is attached to the spectrometer. e scattering spectrum averaged over the
full observation window of the spectrometer is reported in blue in the bottom plot. e character-
istic feature of this spectrum is a resonant scattering response centred around 600 nm. is spectral
feature is recognised as the excitation of a dipolar LSPR supported by the prismatic particles ( g-
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5.3 Inhomogeneous broadening

ure 4.9). On the high energy side of this resonance peak, we observe an increase of scattering owing
to the presence of diffraction by the regular lattice formed by the particles. e light that is diffrac-
ted by this array results in an increased intensity when the rst diffracted order enters the collection
optics. We also note the broadening of the scattered light in the vertical direction below the dif-
fraction limit, indicating the spreading of the scattered light onto the grating of the spectrometer.
On the low energy side of the resonance, the multiple peak structure arises from the occasional
presence of a larger particle or particle cluster that supports a LSPR at a longer wavelength. In ad-
dition, the grating of the spectrometer introduces an artefact in this spectral region if no high-pass
lter is used (as was the case for this experiment). e observation of a distribution of resonances

in such a sample is emphasised when comparing the overall scattering spectrum with the spectra
from smaller regions of the sample (seen as white bands of unequal brightness in the image from
the spectrometer). ree such traces are reported in the graph of gure 5.8, and clearly coincide
with the expected LSPR resonance from triangular particles ( gure 4.9).

In a sample comprising several defects and closely spaced particles, it is difficult to assess the
relative in uence of the dispersion in particle sizes and the interaction between particles on the
average spectrum. To separate out these two contributions, a speci c study of inhomogeneous
broadening was made on nanorods fabricated by electron beam lithography.

Figure 5.9 presents the morphology of three particles fabricated for this study, which had the
same nominal dimensions and were fabricated on the same sample with a spacing of two microns.
is distance was chosen as a trade off between several constraints. (i) e particles should reveal
as little electromagnetic interaction as possible. (ii) A spacing too large would compromise the
spectroscopy of the ensemble, in terms of spectral resolution and signal-to-noise ratio. (iii) e
available collection optics do not allow to distinguish particles that are less than a micron apart.

100nm

Figure 5.9: Scanning electron micrographs of 3 gold nanorods on a glass substrate (approximate
dimensions 100 nm×80 nm×40 nm). e actual separation between particles is 2 µm.

ese three particles were characterised by dark- eld spectroscopy in two steps: rst, a scatter-
ing spectrum from each individual rod was collected. Second, the spectrometer slit was adjusted
to allow the measurement of the scattering by the three particles. ese spectra are shown in g-
ure 5.10 for the polarisation of the incident light along the short axis of the particles. e trace in
red is added for comparison, and represents the average of the three individual spectra.

We observe a good resemblance between the ensemble response and the average of the indi-
vidual spectra. It is however noticeable that the agreement is not perfect, and was indeed worse for

106



5.3 Inhomogeneous broadening

wavelength / µm

sc
at

te
rin

g 
in

te
ns

ity
 (a

.u
.)

0.0

0.2

0.4

0.6

0.8

1.0

0.5 0.6 0.7 0.8 0.9

individual spectra
sum of the spectra
collective spectrum

Figure 5.10: Dark- eld spectra of three individual nanorods (approximate dimensions
100 nm×80 nm×40 nm), and the collection of them. eparticles are immersed in index-matching
uid (refractive index 1.46). e incident light is polarised along the short-axis, in the plane of the

sample.

the polarisation along the long axis of the particles. Amongst possible causes for this discrepancy is
the high sensitivity of the scattering response with respect to the precise conditions of illumination.
As the sample is slightly moved to characterise each individual particle, the illumination condition
is altered and results in a similar problem to that faced in chapter 4 where the scattering response
of the larger nanorods was shown to display a mixture of resonances even with careful attention
being paid to the polarisation of the incident light.

A simple dipole model was used to further investigate the effect of inhomogeneous broaden-
ing and to provide some insight on the in uence of the particle size distribution in the ensemble
spectrum when no electromagnetic interaction between particles is considered. In gure 5.11, the
dipolar approximation is used to model the optical extinction of gold nanoparticles with a normal
and uniform size distribution. e average of the spectra corresponds to the optical response of a
dilute collection of such particles, where no interaction is considered (single-scattering).

A notable feature of the average spectra for the highest value of disorder is the asymmetry
(and multiple peaks) in the spectral lineshape, skewed towards the long wavelengths. is skew
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Figure 5.11: Inhomogeneous broadening in the dipole approximation. Calculated average spectra
for several distributions of dipoles. e polarizability is described by themodi ed long-wavelength
approximation for ellipsoids. e nominal axes of the ellipsoid were a=120nm, b=80nm, c=35nm,
illuminated along the c-axis, with polarisation along the a-axis. e surrounding medium is air.
e top panel presents the spectra for a normal distribution of long axes for 144 (solid lines) and
196 dipoles (dashed-lines). Five values of disorder in the long axis of the ellipsoids are considered
(standard deviation indicated in the legend). e sizes are drawn from a normal distribution (top
panel, standard deviation indicated in the legend) and uniform distribution (bottom panel, the
deviation corresponds to the support of the distribution).

occurs because a symmetric distribution in particle sizes leads to a skewed distribution of reson-
ance frequencies as the dependence of the LSPR on the aspect ratio is not linear, and also that
the dispersion in the dielectric function gives more intense resonances at longer wavelengths. e
spectral lineshape of an ensemble of particles is oen described as a Voigt pro le [28], which is the
result of a convolution between the resonance curve of the LSPR associated with a single particle,
and a distribution of resonance frequencies. is convolution should be weighted by a function
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that describes the intensity of the LSPR as a function of particle size. Further, particles of different
sizes can display a range of spectral linewidths (as seen in chapter 4). In view of those multiple
parameters that affect the inhomogeneously broadened lineshape, the inverse scattering problem
that consists in retrieving the individual particle response from a measurement of the ensemble
response appears highly degenerate.

5.4 Particle interactions

In addition to inhomogeneous broadening — the measurement of an average spectrum from a
sample of random particle sizes, the light scattered by a collection of particles can differ substan-
tially from the response of a single particle due to electromagnetic interaction between neighbour-
ing particles. Any such interaction is characteristic of a multiple scattering process: a particle in
the cluster is excited by an electromagnetic eld that differs from the light incident on the cluster.
It should be noted, however, that the separation of the electromagnetic eld exciting the structure
in the sum of the incident eld plus the contribution of partial waves is a purely mathematical
construction. e view of multiple scattering as a step-by-step process where ‘photons’ are hitting
particles two or more times in a chronological succession of events is misleading and should be
avoided [29–31]. e response of a medium exhibiting multiple scattering is non-local, the sus-
ceptibility function involves a convolution of the electric eld at neighbouring locations in space.

e situation of multiple scattering can be approached theoretically in several different ways,
depending on the number of interacting elements and on their relative positions.

For clusters containing a small number of particles, there is the possibility of solving the scat-
tering of light by the cluster with techniques such as DDA, FEM or FDTD, treating the cluster as a single
scattering body (the fact that it is disjoint does not change the equations, only the shape speci ca-
tion). Another approach considers the scattering by individual elements using the Mie theory or a
more general T-matrix scheme, and makes use of the translation theorem for vector spherical wave
functions to express the partial waves scattered by each element in the coordinate system of the
other particles. It is possible to cast the resulting system of equations in a simple form that requires
only little computational overhead aer the characterisation of the single particles.

When the scattering medium comprises a very large number of particles, and each of these
particles is located in the far- eld zone of its neighbours, the so-called radiative transfer equation
can be used to describe the average diffusion of light through the medium [30]. Effective medium
theories have also been employed to model the optical properties of a mixture of particles embed-
ded in a matrix [32, 33]. Periodic systems in 1, 2, or 3 dimensions lead to another range of possible
numerical and semi-analytical techniques based on the expansion of the elds in a basis of periodic
functions (Fourier modal expansion).

In the next section I will discuss how the approximation of coupled dipoles can present a simple
picture of the multiple scattering process that modi es substantially the optical properties of small
gold nanoparticles.
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5.4.1 Dipolar coupling

When two identical gold nanoparticles arewidely separated (relative to their size and to thewavelength),
they support unperturbed eigenmodes of the electromagnetic eld that describe the interaction of
light with the scatterers in isolation. When the separation is reduced, the eld that is scattered by
one particle can excite the other particle and conversely. is dynamical system describes a mul-
tiple scattering process. e optical properties of the ensemble are described by a combination of
the two scatterers with a perturbation term that accounts for the relative interaction between the
particles via their scattered eld. e mathematical description of two such coupled oscillators is
analogous to the interaction between two atomic orbitals in chemistry, where the coupling results
in the formation of hybridmolecular orbitals. It is also the same description that is used to describe
themechanical systemof two coupled pendulums. Each pendulum in isolation is characterised by a
given eigen-frequency. When a link is made between the two oscillators, the compound system has
a set of two hybrid modes with different eigen-frequencies that can be constructed as a linear com-
bination of the modes of two isolated oscillators (symmetric and antisymmetric displacements).
e stiffness of the link between the two oscillators dictates the splitting of frequencies between the
isolated mode and the new hybrid modes (a stiffer link results in a stronger splitting). e beating
between the two hybrid modes results in an alternating transfer of energy from one oscillator to
the other.

Let us consider the case of two identical dipoles a and b of polarizability α, separated by a
distance d . e dipole moments obey the coupled dipole equations,

Pa =α
�

E0+ ḠPb
�

(5.1a)

Pb =α
�

E0+ ḠPa
�

, (5.1b)

where Ḡ is the Green’s dyadic that expresses the eld radiated by a dipole (equation 3.40). Equa-
tions 5.1 can be cast in matrix form, 

E0

E0

!
=

 
I/α −Ḡ
−Ḡ I/α

! 
Pa

Pb

!
, (5.2)

where the interaction matrix on the right-hand side is formed of 3×3 blocks. e diagonal terms
are the response of each dipole to the incident eld, and the off-diagonal elements Ḡ(d ) describe
the coupling between the two dipoles and can be seen as a perturbation of the uncoupled system of
the two oscillators (when d is large). Equation 5.2 can be solved by diagonalising the interaction
matrix. In the new system of normal coordinates, the dimer is described by a combination of
two eigen-modes which are the symmetric con guration (two dipoles aligned) and antisymmetric
con guration (two dipoles of opposite orientation). e two eigenmodes have a different effective
polarizability,

α∗ = α

1±αg
, (5.3)
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5.4 Particle interactions

where g is the relevant term from the Green’ dyadic. e antisymmetric mode (+) has no net
dipole moment and cannot be excited by a plane wave incident along the normal to the dimer axis
(there needs to be a phase difference between the two particles). e symmetric con guration
(−) corresponds to an effective dipole moment located at the centre of the dimer. e intensity
of the total dipole moment depends on the coupling between the two dipoles, and this coupling
is described by the components of the Green’s dyadic that depend on the relative orientation of
the dipoles and of their separation [34]. An illustration of the eld scattered by a unit dipole is
presented in gure 5.12.

ebottompanel presents the near- eld component of the electric eld for a unit vertical dipole
(arbitrary intensity scale). e radial component peaks along the dipole axis, while the tangential
component is maximum in the orthogonal direction. e maximum of the radial component is
twice the value of the maximum for the tangential component: as a consequence the coupling
between two particles will be stronger in the direction of the dipole moments when the particles
are situated in this near- eld zone. e near- eld contribution of the dipolar eld decays as 1/r 3,
and aer a distance of about a wavelength the induction term in 1/r 2 and radiation term in 1/r

will dominate [34, 35]. e top panel presents the tangential component of the electric eld in the
radiation zone (distance ≫ λ). In this region, the eld forms a spherical wave-front. e radial
component vanishes faster than 1/r and carries no energy in the far- eld (not shown here). e
tangential component is maximum in the direction orthogonal to the dipolemoment, and vanishes
along the dipole moment. e eld that is scattered from the dipole is a wave that is modulated
in space with the periodicity given by the wavelength of the light in the surrounding medium. In
particular, this means that if the distance between the two dipoles is such that the eld radiated by
one dipole is in phase with the incident eld at the other dipole’s location, the effective polarizability
is increased (and vice versa). is periodic modulation will be important in chapter 6 where I will
present a study of the long-range radiative coupling between particles that are separated by an
integer factor of the wavelength.

Due to the particular symmetry of the dipolar eld, the coupling between two dipoles depends
on their relative position. I will now illustrate this dependence by considering two particular con-
gurations: (i) the dipoles are aligned along the dimer axis, (ii) the dipoles are orthogonal to the

dimer axis. In 5.13 the coupled dipole approximation (equation 5.3) is used to model the in uence
of the radiative coupling between two gold nano-ellipsoids as a function of distance. e dimer is
formed of two identical dipoles that characterise a gold ellipsoid of semi-axes a= 60 nm, b= 40 nm,
c= 20 nm, for which the polarizability was obtained using the modi ed long wavelength approx-
imation 3.28.

In the top panel the calculated extinction of the dimer is compared to the isolated dipole extinc-
tion (dashed curve) for different separations. For the larger separation (400 nm) little interaction
is observed — the extinction is slightly blue-shied from the isolated particle response, this blue-
shi occurs because of the long-range components of the dipolar eld. As the gap between the
dipoles is made smaller, the resonance of the dimer broadens and red-shis as a result of near eld
interactions. At small gap values (100 nm) the red-shi of the mode is substantial (∼ 150nm) and
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Figure 5.12: Calculated near- eld and far- eld radiation in the vicinity of a vertical point dipole
(distance in units of the wavelength). (a) Instantaneous tangential component of the electric eld.
e black dot in the centre is an exclusion zone around the origin where the formula diverges.
(b) Near- eld distribution for the instantaneous radial component of the eld (le) and tangential
component (right). e colour scale is common to both panels.
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Figure 5.13: Coupled dipole model of the extinction spectrum of a dimer of identical gold nano-
ellipsoids. e dashed line is the extinction spectrum of a single particle (semi-axes a= 60 nm,
b= 40 nm, c= 20 nm.) e light is incident along the c axis, and is polarised along the long axis
a , in an homogeneous surrounding medium of index 1.5. e separation is varied from 100 nm to
400 nm by steps of 50 nm, for two orientations of the dimer as indicated in the insets.

arises from the decreased restoring force acting on the charges due to the Coulomb attraction of
the charges on either side of the gap.

In the bottom panel of gure 5.13, a different behaviour is observed for the situation where
the two dipole moments are not aligned but parallel. e smallest gap yields a blue-shi of the
LSPR with respect to the isolated dipole response, and a broadening of the spectrum. As the sep-
aration is increased the blue-shi is reduced and the peak position tends towards that of the isol-
ated dipole. e intensity is however higher than for the isolated dipole even with a separation
of 400 nm. e blue-shi and increase in intensity occur because the eld that is acting on each
dipole is strengthened by the distribution of charges on the neighbouring particle.
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5.4 Particle interactions

For closely spaced particles, the interaction of themodes is mainly of electrostatic nature (1/r 3,
no retardation). e shi in resonance frequency of the LSPR can be understood by the plasmon
hybridization model [36, 37] described in gure 5.14.
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Figure 5.14: Schematic of the hybridization of two dipoles (aer [37]). e diagram displays the
energy levels of different combinations of two LSPRs (the reference energy is for the two dipoles in
isolation).

In this schematic, the LSPRmodes associated with two nanoparticles split in two hybridmodes
with different energy levels (one blue-shied, the other symmetrically red-shied) when the di-
poles are brought in proximity. e symmetric con guration yields a blue-shi of the resonance
because the charges of the two particles acting in concert result in a stronger restoring force for the
surface charge density associated with the LSPR (bottom panel of gure 5.13). e antisymmetric
con guration, however, leads to a red-shi of the LSPR (top panel of gure 5.13). e two other
con gurations are not observed when the dimer is excited by a plane wave (dark modes). e pos-
sibility of excitation of dark-modes has however been demonstrated for larger nanoparticles [10,
38], and using a localized emitter [39].

e plasmon hybridization model discussed in this section describes accurately the coupling
between two small nanoparticles that can bemodelled as dipoles [36, 37].e approximation how-
ever breaks down for very short particle-to-particle separations, or large particles where the elec-
tromagnetic interaction involves higher order multipoles [40, 41].
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5.4.2 Coupling to higher order modes

In addition to the dipolar coupling between particles, the electromagnetic coupling of neighbour-
ing particles can lead to an increased excitation of higher order modes. is effect arises because
each particle is not only excited by a planewave, but also by the inhomogeneous partial elds origin-
ating from neighbouring particles. For spheres, the orthogonality of the normal modes (spherical
harmonics) is broken when the eld scattered by one particle is translated to the location of an-
other particle. e non-vanishing overlap between the modes means that a partial wave scattered
by one sphere can excite a combination of modes on another sphere. In gure 5.15 the effect of
particle separation and particle size on the scattering spectrum is studied by modelling a pair of
gold spheres with different values of sphere radius.

is numerical simulation was performed for gold spheres of radii 50 nm, 80 nm and 120 nm
in a surrounding medium of index 1.5. e response of an isolated sphere is shown in dashed line
for comparison. e numerical scheme is described in [42], and is based on the rigourous solution
of the Maxwell equations by the multipolar expansion of the elds at the location of each scatterer.
e translation of the multipoles to the coordinates of each particle in the cluster leads to a system
of coupled equations similar to equation 5.1a but for an arbitrary number ofmultipoles. In practice,
the number of multipoles required in a simulation is truncated to a nite value that can be tuned
to reach a required accuracy of the solution (such convergence was veri ed for each of the spectra
presented in gure 5.15).

e toppanel (smaller spheres) present results that are qualitatively similar to that of the coupled
dipolemodel ( gure 5.13), which is the expected result for particlesmuch smaller than thewavelength
(the case of very short gaps relative to the sphere radius is not investigated here, see for instance [40]
for a study of the critical transition from short gaps to touching dimers). e resonance red-shis
for the parallel polarisation, and blue-shis for orthogonal polarisation. e strong absorption
edge of gold near the LSPR frequency however dampens the change in the resonance intensity in
comparison to the situation of gold ellipsoids ( gure 5.13).

e larger particles (bottom panels) depart from the coupled dipole model by the presence
of multipolar resonances. When the incident polarisation is directed along the axis of the dimer
( gure 5.15, le panels), we observe a strong excitation of a quadrupolar resonance. e spectral
position of the quadrupolar mode is not affected by the separation between the two particles, but
the intensity relative to the dipolar mode undergoes a large change. For short particle spacings,
the dipolar mode is strongly red-shied and of the same magnitude as the quadrupolar mode. As
the separation increases, the dipolar mode blue-shis and weakens considerably while the quadru-
polar mode gains in intensity. For a separation of several times the sphere radius, one recovers the
single scattering response (dashed line), where the dipolar mode regains its strength. is com-
plicated behaviour would require further study. In particular, the eld pattern associated with the
quadrupolar mode has a different symmetry to that of a dipole [34, 43], which could provide some
insight in the coupling mechanism between the two quadrupoles, and the possible mixing between
dipoles and quadrupoles.
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Figure 5.15: Modelled scattering efficiency spectra of a dimer of gold spheres as a function of sphere
radius and separation, using a rigourous multiple scattering calculation for a cluster of spheres
(code courtesy of J. García de Abajo [42]). e dimer consists of two identical spheres of radius
50 nm, 80 nm, 120 nm in a surrounding medium of index 1.5. e spheres are illuminated at nor-
mal incidence from the dimer axis, with two polarisations (le vs right panels). e separation
between spheres is varied as a multiple of the sphere radius, as indicated by the colour legend. e
dashed line is the scattering efficiency spectrum of a single sphere shown for comparison.

In the bottom-right panel, the dimer of large spheres is illuminated with a polarisation per-
pendicular to the dimer axis. We note that even at a separation of 10 times the sphere radius the
extinction of the dimer differs from the response of an isolated sphere. An oscillation in the spec-
tral lineshape indicates the interference between the incident light and the dipolar radiation from
one particle acting on the other. is far- eld radiation is maximum in this orientation, and van-
ishes for the case of parallel polarisation. As the gap between the spheres is reduced, the dipolar
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mode blue-shis and weakens. For small gaps, the quadrupolar mode is the dominant feature of
the extinction spectrum.

5.4.3 Large clusters

e discussion of the modi cation of the optical response of a dimer as a function of the particle
separation contains the essence of the effects that are observed in large collections of particles. e
near- eld interaction is of short-range nature, and is therefore limited to the nearest neighbours. A
disordered collection of identical LSPR-supporting particles will typically present a broad extinc-
tion spectrum in comparison to the LSPR of an isolated particle because the interaction between
neighbouring particles leads to a range of red-shis and blue-shis according to the distribution
of particle separations and orientations. I will now present experimental measurements on such
ensembles of gold nanorods with varying particle-to-particle separations.

5.5 Extinction measurements in dense arrays,

sensitivity to bulk refractive index

A sample of scanning electron micrographs of six arrays of gold nanorods fabricated by electron-
beam lithography is displayed in gure 5.16. e sample presents several levels of disorder in
particle positions and particle orientation.

a) b) c)

d) e) f)

1µm

Figure 5.16: SEMs of dense arrays with positional disorder. (a–c) arrays of particles with xed
orientations and different levels of disorder (a: nominally regular, b: pseudo-random, c: random).
(d–f) identical positions as in (a–d) but random orientation of the particles.

Because collections of particles typically offer a higher signal-to-noise ratio in optical meas-
urements (compare gure 4.6 and gure 5.17), and can be produced with large-scale fabrication
techniques (e.g nanosphere lithography), ensembles of particles are oen more attractive in prac-
tical applications than single particles. If a collection of nanoparticles is a good candidate for the
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design of a biosensor, for instance, it is important to assess the relative sensitivity of single particles
and collections of particles with respect to a change in the surroundingmedium. Because of particle
interactions, two samples with a fabrication process leading to comparable inhomogeneous broad-
ening can shown a resonance of very different quality depending on the geometrical arrangement
of the particles. ese effects are quanti ed experimentally in gure 5.17.

Arrays of particles with two different occupancy were investigated. e le panels correspond
to an average separation of 300 nm between particles, and 200 nm for the right panels. e trans-
mittance was obtained by measuring the transmission of the light through the sample and nor-
malising by the light transmitted through a neighbouring part of the sample where no particles
were present. e refractive index of the superstrate medium was varied from air to pure wa-
ter (n=1.333) by using a ow cell adapted onto the substrate. e transmittance for both media
is shown for comparison in each panel (solid curves: air, dashed curves: water). e six different
geometrical arrangements of particles in the arrays are split into two categories: the top three panels
are for nanorods aligned along one particular direction (that of the polarised light) and correspond
to three degrees of disorder (top: regular array, middle: random array with an exclusion zone, bot-
tom: random array). e three bottom panels correspond to the same geometrical arrangement of
particles but with a random orientation of the nanorods.

It is clear that the regular arraywith a consistent orientation of the particles (top panels) provides
the sharpest and most de ned resonance curve. e density of 300 nm leads to a narrower and
stronger transmittance dip than the array of spacing 200 nm. is is in agreement with the discus-
sion of interparticle coupling (section 5.4.1).

As the disorder increases, the range of LSPR shis due to particle interactions leads to a further
broadening and weakening of the transmittance minimum associated with the LSPR. Further, the
situation of a completely random arrangement of particles leads to a distribution of particle sizes
(neighbouring particles can become connected, see gure 5.16(f)). e distribution of particles
sizes causes an inhomogeneous broadening of the resonance. e effect of the random particle
orientation on the transmittance is to further broaden the spectrum (compare (a) and (d), for in-
stance), as a mixture of long-axis and short-axis resonances is excited with a strength that depends
on the relative orientation of the incident (polarised light) and the axes of the particles. For the
small aspect ratio considered in this sample, the two resonances overlap spectrally and the result-
ing spectrum shows only one broad spectral feature.

e sensitivity of these arrays to a change of refractive index of the superstrate medium from
air to IPA is difficult to assess in the broader spectra. e spectral shi of the extinction peak is
evaluated as 40 −50 nm for all the samples considered here. is value is however a poor indication
of the relative performance of the arrays in a sensing perspective: arrays (a) are clearlymore suitable
than arrays (f) as a clean and well de ned LSPR spectrum allows for an accurate and reproducible
determination of the spectral shi due to a change of the surrounding environment. e width
of the spectral feature is particularly important in this respect, as a broader resonance leads to a
smaller change of intensity at a xed probing wavelength for a given value of the spectral shi.
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Figure 5.17: Experimental transmittance spectra from arrays of gold nanorods with different geo-
metrical con gurations. e particle sizes were 120 nm×80 nm×40 nm. e superstrate medium
was air (solid curves) and water (dashed curves, n = 1.333). e le panels consider arrays with an
average particle separation of 300 nm, while the right panels consider denser arrays with average
separation 200 nm. For each density of particles, 6 geometrical arrangement of particles are con-
sidered (a—f). Panels (a)–(c) are for arrays where the nanorods are all aligned along one direction,
while panels (d)–(f) are for arrays where the in-plane orientation of the nanorods was random. For
each of these groups three different con gurations are presented: regular arrays (a and d); random
arrays with no overlapping particles (exclusion zone, arrays b and e); random arrays (c and f).
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5.6 Conclusion

e subject of this chapter focussed on the response of a collection of gold nanoparticles in close
proximity (average spacing∼ 200nm–400 nm). Arrays of such particles were fabricated by electron
beam lithography and nanosphere lithography, and characterised using bright- eld transmission
spectroscopy.

In this situation, the particles present a modi ed optical response that is due to the electromag-
netic interaction between neighbouring particles. Each particle is excited by a combination of the
incident eld and a superposition of partial waves multiply scattered in the cluster of particles. e
spectral response of such collections of particles was examined in bright eld transmission spec-
troscopy and revealed the following conclusions. First, the observation of a large sample of particle
responses affects the observed lineshape by inhomogeneous broadening. e resonance observed
in extinction measurements on several particles leads to a much broader lineshape than in single
particle measurements on isolated particles. is effect was veri ed using electron-beam litho-
graphy samples for which three particles were individually probed by dark- eld spectroscopy, in
comparison to the global scattering obtained from the three particles simultaneously. e spectral
lineshape can be represented as a convolution of the individual particle spectra with the distri-
bution of resonance frequencies. e optical response of a collection of particles may also differ
from the individual particle response because of the electromagnetic coupling between particles.
Using a dipole model, this coupling was shown to result in a broadening of the spectral shape for
densely packed particles. Further, the proximity of neighbouring particles with a strong scatter-
ing response can result in the excitation of multipolar resonances that would not be observed for
isolated particles illuminated by a single plane wave. is coupling to higher order resonances was
modelled for a cluster of spheres using an extension of the Mie theory.

Transmission experiments were conducted on regular and irregular arrays with varying degree
of disorder and density. It was found that the arrangement of the particles can substantially com-
promise the sensitivity of the arrays to a change in the bulk refractive index environment. e spec-
tral shi is only weakly modi ed, but the resonance lineshape is strongly broadened and weakened
by the combine effects of inhomogeneous broadening, mixture of resonances, and particle inter-
actions.
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“Si l’on pouvait se voir avec les yeux des autres, on disparaîtrait
sur-le-champ.”

Emile M. Cioran

6
Diffractive coupling in regular arrays

C    display interesting optical properties due to their strong
interaction with light, an interaction that arises from the excitation of localised surface plas-

mon resonances (LSPR) [1, 2]. When the average particle separation is sufficiently small, light
scattered by one such LSPR-supporting particle can signi cantly contribute to the excitation of
its neighbours. Such coupling between particles can alter the single scattering response in a variety
of ways depending on the distance between particles, as well as their geometrical arrangement.

In chapter 5, we observed the strong electromagnetic interaction between gold nanoparticles
when their average separation was shorter than the wavelength of resonant excitation of a localised
surface plasmon. is coupling regime exhibits a mixture of near- eld dipolar coupling and excit-
ation of multipolar resonances that leads to a general broadening of the resonance as observed in
extinctionmeasurements. is is especially clearwhen the experimental spectra are comparedwith
the scattering measurements obtained for largely spaced (in effect, isolated) particles, chapter 4.

ere exists an intermediate regime where the separation between particles and their arrange-
ment are such that radiative coupling can occur between a large number of particles, leading to a
very differentmodi cation to the LSPR. Of particular interest here is the regimewhere the particles
are separated by an average distance that is approximately equal to the wavelength of the light that
propagates in the surrounding medium. In 1- or 2-dimensional ordered arrays of such particles, a
delocalised surface mode can develop that couples together particles over large distances. Applic-
ations in nanoscale waveguides [3, 4], sensing [5], and slow light [4, 6, 7] have been envisaged.

In this chapter, I will consider this regime of large-scale coupling in two-dimensional, regular
square arrays of nanoparticles. A typical scanning electron micrograph of such a sample is shown
in gure 6.1.

Light incident on such system is scattered by the particles in all directions. Of particular interest
here is the light that is scattered so as to propagate in the plane of the particles. Such light will

121



h

h

Figure 6.1: Scanning Electron Micrograph of the central region of a typical array. e pitch h of
the array (in this case 500 nm) is indicated.

undergo multiple scattering by the regularly spaced particles. A geometric resonance can arise
when thewavelength of the scattered light is commensurate with the periodicity of the array, which,
when it occurs in the same spectral range as the LSPR, can lead to a dramatic modi cation of the
measured optical extinction. is coupling regime is very different to the one discussed for a dimer
of dipoles situated in the near- eld zone. Here the interaction between particles occurs over large
distances and couples a large number of particles. A particularly interesting consequence of this
regime of particle interactions is the formation of a sharp spectral feature near the diffraction edge,
in contrast to the broadening observed in the near- eld coupling regime. It appears that this effect
was rst predicted by Wokaun and coworkers (see for example [8]) and Markel [9, 10] and more
recently followed up by Schatz and co-workers [11]. Further theoretical/computational work by
these groups has extended our understanding [3, 9, 10, 12–16], and a tutorial review linking these
concepts to those associated with hole arrays has recently been given [17].

Previous experiments to con rm the existence of these sharp diffractive features in the optical
response of metallic nanoparticle arrays met with only limited success. Haynes et al. [18], Hicks et
al. [19], Sung et al. [20] and Lamprecht et al. [21] performed detailed studies of arrays of gold and
silver nanoparticles, but the effect was not as pronounced as expected from the modelling. In each
case, failure to observe the sharp spectral features appears to be due to one or more of the following
factors: lack of an homogeneous environment, an angle spread of the illumination, an inappropriate
choice of the particle volume and aspect ratio. Félidj et al. [22] reported sharp features in a system
consisting of a regular array of gold nanorods supported on a thin indium tin oxide (ITO) layer.
However the presence of the ITO layer complicates the analysis and makes the underlying physics
harder to unravel: such a system leads to a rich physics when the ITO is thick enough to support
waveguide modes that interact with the LSPR [23, 24]. In this chapter I report measurements from
regular arrays of gold nanorods that exhibit the expected sharp peaks in extinction. I also explore
the role of array period and surrounding index on the spectral lineshape.
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6.1 Radiative coupling

e interaction of incident light with an array of particles as shown in gure 6.1 is depicted in the
schematic view of gure 6.2. For simplicity light is considered incident on the array of particles
at normal incidence. e probability of interaction of the light with each particle is described by
the scattering cross-section of the nanorods, which is typically much larger than their geometrical
occupancy when the wavelength is in the range of excitation of the LSPR. e remaining part of
the incident light is transmitted through the substrate. e light that is scattered by the particles
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Figure 6.2: Schematic of the multiple scattering process.

arranged in a periodic structure will produce an interference pattern that is associated with diffrac-
tion. In fact, such a periodic structure can be described as a diffraction grating. For wavelengths of
the light that are a multiple of the particle separation, the scattered light interferes constructively.
e far- eld radiation pattern is formed by a succession of fringes that correspond to the spatial
Fourier components of the scattering sample [25]. In particular, for wavelengths shorter than the
separation between particles a rst order of diffraction emerges from the sample in the forward
direction, and moves closer to the normal as the ratio separation / wavelength is increased.

In the rst decade of the 20th century, Wood [26, 27] and Rayleigh [28] observed the peculiar
response of such metallic gratings when this diffraction condition is occurring at a grazing angle.
A succession of a bright and dark band was observed in the transmission of such structures which
were referred to as Wood’s anomalies. e explanation for this phenomenonwas given by Fano [29]
who described the excitation of a surface mode at the wavelength corresponding to the Rayleigh
cut-off of the grating. is surface mode was recognised as a surface-plasmon propagating on the
grating surface.

In the situation considered here, the grating is formed by nanoparticles that are isolated from
each other by a non-conducting substrate, but the existence of a surfacemode can be attributed to a
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polarisation current that couples together the different scatterers and propagates into the dielectric
medium. Light that is scattered so as to propagate at a grazing angle can undergomultiple scattering
— instead of considering only individual scattering events from the particles in isolation, we need
to consider a delocalised surface mode of the structure as a whole. is surface mode can re-
couple to radiation on both sides of the interface. It is the interference between this scattered light
and the direct transmission that is measured as extinction. Similarly, the re ection of light by
the sample will contain the interference between this scattered light and the light that is re ected
by the interface (with an additional π-phase shi upon re ection in a generally asymmetric (air/
dielectric) con guration).

e resonance exhibited by such a sample involves an interplay between the excitation of plas-
mons localised on the particles, and diffraction resulting from the scattering by the periodic ar-
rangement of these particles. A simple coupled dipolemodel can be used to obtain a semi-analytical
description of the effect, revealing the origin of themain features in the observed spectral lineshape.

6.1.1 Coupled dipole model

In chapter 5, the coupled dipole approximation was introduced as a simple modelling tool to de-
scribe the optical response of a pair of interacting, well-separated, sub-wavelength particles. is
procedure can be generalised to an arbitrary number of particles and is closely related to the Dis-
crete Dipole Approximation (DDA), a numerical technique that is commonly employed to model
the scattering properties of a single, connected scatterer. In the DDA, a ‘dipole’ corresponds to a
mathematical construction and represents a virtual polarisable unit that is part of a larger scatter-
ing body. e prescription for the polarizability is obtained in the DDA from the Lorentz-Lorenz
formula that describes the refractive index of the bulk medium. is simple prescription violates
the conservation of energy as expressed in the optical theorem [30]. Several corrections have been
suggested, the most widely used being the Lattice Dispersion Relation (LDR) which is obtained by
considering the effective dielectric function of an in nite cubic lattice of dipoles [30].

In the coupled dipole approximation (CDA) for collections of subwavelength particles, how-
ever, a dipole has a more direct physical interpretation: it approximates the optical response of one
scatterer. To be accurate, the CDA requires that the particles are sufficiently small compared to the
wavelength, as discussed in chapter 3. A prescription for the polarizability of such dipoles needs to
consider the in uence of the size and shape of the particle, where the Lorentz-Lorenz polarizability
only considered an isotropic unit cell. Further, to account for the dynamic depolarisation and ra-
diative damping, corrections to the static polarizability need to be introduced to obtain a realistic
approximation of the individual particle scattering properties in the dipolar approximation (see
section 3.2.2). In this section I will show how the salient properties of diffractive coupling in arrays
of nanorods can be understood by using a further simpli cation of the CDA, which assumes an
in nite array of dipoles excited at normal incidence.

e nanorods studied in this chapter are described as ellipsoids (semi-axes a , b , and c , volume
V ), for which the static polarizability can be written as [31],

αstatic = ab c
ϵm − ϵd

3ϵd +3L(ϵm − ϵd )
, (6.1)
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6.1 Radiative coupling

with ϵm and ϵd the relative permittivities of the metal and surrounding medium respectively, L is
a shape factor given by equation 3.24.

When the particle size is of order 50 nm or more, this expression needs to be modi ed to ac-
count for dynamic depolarisation and radiative damping, a generalisation known as the modi ed
long wavelength approximation (MLWA) [18]. is is done by introducing an effective polarizab-
ility αmlwa,

αmlwa =
αstatic

1− 2
3 i k 3αstatic− k 2

a α
static

, (6.2)

k = nk0 being the wavenumber in the (homogeneous) surrounding medium which has refractive
index n . When excited by an electromagnetic wave at frequencyω, a dipole re-radiates a scattered
wave in proportion to its dipole moment. e net eld on every dipole is therefore the sum of the
incident eld, plus the radiation fromall other dipoles, which leads to a systemof coupled equations
to be solved self-consistently for the total eld.

6.1.1.1 Semi-analytical formulation for normal incidence

Assuming an in nite array, the general solution can be expressed as an effective polarizability α∗
for every (indistinguishable) particle,

α∗ = 1

1/α−S
, (6.3)

where the array factor S embraces the contribution from the other dipoles, and is only dependent
on geometrical parameters. In the case of normal incidence, and for a square array of dipoles, this
factor is

S =
∑

other dipoles

�
(1− i k r )(3cos2θ −1)exp(i k r )

r 3 +
k 2 sin2θ exp(i k r )

r

�
, (6.4)

θ being the in-plane angle between the dipole locations. e effective polarizability 6.3 is formally
identical to the one obtained in chapter 5 for a pair of dipoles — we therefore understand the
array factor S to be responsible for a splitting of the LSPR due to the interaction between multiple
scatterers. e coupling between the dipoles results in a hybrid, delocalised surface mode.

e poles of the effective polarizability de ne the resonances of this hybrid mode [10], and
result from an interplay between the particle properties and the geometrical array factor. e array
factor is a complex number, and in appendix A a derivation is proposed for the introduction of an
effective polarizability of the form 6.3 with the following conclusions,

• the real part of S induces a shi of the resonance frequency (blue shi forℜ(S)< 0, red-shi
for ℜ(S)> 0)

• the imaginary part of S modi es the resonance width (ℑ(S)< 0 results in a broadening of the
resonance, while ℑ(S)> 0 reduces the width).

e possibility of partial cancellation of the radiative damping was soon recognised (see for ex-
ample [13]), and triggered a renewed interest in the study of such periodic structures. e LSPR
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Figure 6.3: (Top graph) Blue curve: calculated isolated particle extinction cross section for an el-
lipsoidal particle (semi-axes: a = 60nm, b = 40nm, c = 15nm, surrounding medium: n = 1.46,
incident light polarised along a ). Red curve: same particle in an array. (Bottom graph) Corres-
ponding calculated array factor (real and imaginary part). e nite number of dipoles (400×400)
creates spurious fast oscillations in the array factor S, which were smoothed before insertion in
equation 6.4 (continuous lines).

supported by isolated gold nanoparticles has a low quality factor (Q ∼ 10, see chapter 4) and this
limits the range of applicability in subwavelength plasmonic waveguides, surface-enhanced spec-
troscopies, etc. It is therefore of great interest to observe the reduction of the damping in plasmonic
structures and try to overcome the limitations of the LSPR width that were discussed in chapter 4.

e optical extinction cross-section σext is obtained from the polarizability using the optical
theorem (equation 3.14) [12, 31],

σext = kℑ (α) . (6.5)

Using this simple approach will help us to understand the nature of the hybrid mode and predict
qualitatively the spectral features observed in the experiments. Figure 6.3 presents an example of
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Figure 6.4: Numerical calculation of the real and imaginary parts of the S factor (equation 6.4).
(Le) Varying the number of dipoles for a given dipole separation (0.55 µm); (Right) Varying the
separation for a xed number of dipoles (80×80).

this calculation for an isolated gold ellipsoid, and for the situation when the ellipsoid is part of a
periodic square array.

Several featuresmay be noted. i) A peak in the extinction curve (upper panel) is obtained when
the real part of (1/α−S) vanishes in equation 6.3 [10]. ese crossing points are shown by dashed
grey lines. ii) e jumps in both the real and imaginary part of S (lower panel) are associated with
diffraction: the two vertical dashed red lines indicate the position of the < 1,0 > and < 1,1 >

diffraction edges for this square grating. iii) e intensity of the resulting extinction peaks (upper
panel) depends on the imaginary part of S at this wavelength, and the width will also depend on
the slope of both 1/α and the real part of S [17]: a sharp crossing point indicates that the range of
wavelengths for which the effective polarizability diverges is narrow. A set of array factors is shown
in gure 6.4 for three different periodicities and an increasing number of dipoles in the numerical
evaluation of equation 6.4. As the number of dipoles increases the divergence of the array factor at
the wavelength corresponding to the diffraction condition is more pronounced and sharper.

It is interesting to note the in uence of the particle size and shape on the radiative coupling
as described by the array factor: for particles with small polarizability such as small dielectric
spheres, 1/α is large, therefore the crossing points with the array factor will occur for an narrow
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Figure 6.5: Calculated extinction spectra from a coupled dipole model, with varying dipole separ-
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1.46. e pitch values, h , are 454 nm, 476 nm, 497 nm, and 512 nm for the curves in the le panel,
and 519 nm, 534 nm, 548 nm for the curves in the right panel.

wavelength range (the peak in the S factor becomes extremely sharp), and may not be detectable.
Markel [10] predicted this effect theoretically with an analytical study of the divergence properties
of the coupled dipole model at the diffraction condition, the predicted resonance widths being as
narrow as less than a nanometer.

Using gold particles of large volume and / or aspect ratio, the inverse polarizability can be scaled
down to the regime where the S factor presents a less pronounced slope.

Figure 6.5 shows the effect of pitch variation on the resulting extinction spectra, and reveals
two different regimes.

When the diffraction edge is on the high-energy side of the main localised surface plasmon
resonance (nh < λ0), little radiative coupling can occur as the allowed diffracted orders are all of
higher energy than the plasmon resonance. e blue curves show the effect of pitch variation in
this regime, the spectra show a Fano type shape resulting from interference between directly trans-
mitted light and light scattered by the array. Notice also that the main resonance is sharpened,
red-shied, and enhanced with respect to the isolated LSPR. In the other regime, when the dif-
fraction edge is on the low-energy side of the main resonance (nh > λ0, red curves), a very sharp
and intense peak is found in the long wavelength tail of the main resonance, its intensity and width
decrease for peak positions further from the main resonance.
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6.2 Extinction measurements

6.2 Extinction measurements

e samples were produced by electron beam lithography (EBL) on fused silica substrates (n =
1.46). A 100 nm thick layer of PMMA resist was spin coated on the substrates, with a 15 nm thick
gold over-layer deposited by thermal evaporation to ensure the electrical conductivity required for
the EBL exposure. e spatial extent of the arrays was limited to 35 µm × 35 µm to minimize the
shape variationdue to beamdistortion at the edges of the available electron-beamwrite- eld (50 µm
× 50 µm). Particle sizes were in the range 50 nm to 120 nm with aspect ratios ranging from 1:1 to
2:1. is spread of sizes was dictated by three parameters: i) the spectral range of our acquisition
system (400 nm — 900 nm), ii) the requirement that only the dipolar mode contributes substan-
tially to the optical response of the particles, iii) smaller particles have resonances that suffer from
strong absorption by the gold and consequently scatter little light. Aer developing the exposed
resist mask, a 2 nm chromium adhesion layer was deposited by thermal evaporation, followed by a
35 nm thick gold layer (99.99 % purity, pressure 2×10−6 Torr). is very thin layer of chromium
was found not to alter noticeably the LSPR. Finally, the resist layer is dissolved in acetone until only
the nanoparticles in contact with the glass are le on the substrate.

e in-plane particle geometries were measured by scanning electron microscopy (SEM), and
the particle height measured by a calibrated crystal monitor during the deposition, and cross-
checked against a tilted SEM image.

e optical characterisation of the samplewas undertaken using bright- eld transmission spec-
troscopy at normal incidence (angular spread< 0.1◦), using a 10x objective for the collection optics
( gure 5.7). A polariser was used in the illumination path to selectively probe the short- and long-
axis resonance of the nanoparticles.

6.2.1 Effect of pitch variation

e experimental data were processed as follows. First, the transmittance spectra for different
particle separations were scaled to account for the fact that a different number of particles contrib-
ute to the extinction, the relevant factor is the occupancy (inverse pitch squared). Second, as the
transmittance per particle has little physical meaning, it was converted into an extinction cross-
section, related to the measured transmittance T by σext = h2 · (1−T ).

e results are plotted in gure 6.6, and show all the features expected from the coupled di-
pole model (compare with gure 6.5). As the periodicity is varied, an interference pattern sweeps
through a broad resonance (the ‘isolated localised plasmon resonance’ with a typical width of
∼ 100 nm, centred at ∼ 710 nm). More speci cally, we observe the existence of a sharp and in-
tense extinction peak on the low energy side of the diffraction edge when the diffraction edge is
on the red-wing of the LSPR. e spectral position of this peak exhibits a clear correlation with the
array period, and I will therefore refer to it as a ‘diffractive peak’. A drop in extinction is also notice-
able around the diffraction edge with respect to the singe particle response, with a small secondary
peak present near the diffraction edge ( gure 6.6 (b)). Félidj et al. observed something similar [22],
but for a sample where the particles were supported on a thin ITO layer. Our observation in the
absence of index asymmetry suggests that the additional minimum cannot be explained by the ex-
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Figure 6.6: Extinction spectra (per particle) for several gold nanoparticle arrays. (a) Average
particle size: 123 nm×85 nm×35 nm. (b) nominal particle size: 120 nm×90 nm× 35 nm. e
particles are in a symmetric refractive index environment (oil immersion, n = 1.46).

istence of two different values of the surrounding refractive index, as suggested in [22]. To further
support this argument, we note that the relationship between the two minima and the diffraction
edge changes as the diffraction edge sweeps through the particle resonance. In chapter 7 further
evidence is presented that this secondary peak is in fact due to the incident light being slightly off
normal incidence.

Another interesting feature observed in gure 6.6 is the strong suppression of extinction when
the diffraction edge is on the high energy side of the LSPR ( gure 6.6 (a)), i.e. the array becomes
almost transparent to the light.

Finally, the area under the normalised extinction curves appears to be almost constant for
identical particle sizes but different particle separations. is nding will be further investigated
in connection with a sum rule for extinction in chapter 7.

In the next section I will present the evolution of the extinction spectrum of such arrays of
particles when the surrounding environment presents an asymmetry in refractive index.

6.2.2 Surroundingmedium

e sharpness of the spectral feature promised from the modelling depicted above has attracted at-
tention for applications such as biosensing and nonlinear spectroscopies. e relatively low quality
factor exhibited by LSPRs is indeed a practical limitation to the applicability of gold nanoparticles in
these and other applications. For a sensing application, two other key factors are to be considered:
the relative shi of the resonance position with respect to a change of the bulk environment ; the re-
lative shi of the resonance due to a thin (sub-wavelength) coating. In the remainder of this chapter
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I will assess the in uence of the refractive index of the superstratemedium in such diffractive arrays
of nanoparticles.

6.2.2.1 Bulk change of refractive index environment

e response of such arrays in an asymmetric refractive index environment was investigated ex-
perimentally by using the setup of gure 5.7 with the particles being immersed in various uids.
Such data is presented in gure 6.7, where the extinction spectra are plotted for two different sets
of arrays of varying particle separations.
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Figure 6.7: Extinction spectra for gold nanorod arrays in an homogeneous index environment
(top, oil immersion n=1.46) and asymmetric refractive index con guration (bottom, incident
light in air), for ve particle separations. Nominal particle sizes: 100 nm×90 nm×35 nm (Top),
120 nm×90 nm×35 nm (Bottom). e vertical lines indicate the position of the < 1,0 > and < 1,1

> diffraction edges for the two refractive index environment con gurations.
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e particle sizes were chosen so as to provide similar LSPR spectral positions in air (bottom
panel) and in the homogeneous index (top panel). e asymmetry between substrate and super-
strate strongly hinders the radiative coupling effect between particles and the results we observe
in the bottom panel are very similar to the results from previous experimental studies [21, 32]: a
strong asymmetry in the spectral lineshape, but without the presence of a sharp spectral feature
near the diffraction edge.

In gure 6.8 the superstratemedium is varied from air (red curves) to isopropanol (blue curves)
(IPA, n = 1.378), to immersion oil (green curves) (n = 1.46) for 5 arrays of nominally identical
particles but different separations. e substrate is fused silica (n = 1.46). Only the symmetric con-
guration leads to a strong, Fano-type modi cation of the LSPR lineshape with clear constructive

and destructive interference on either side of the diffraction edge. In the asymmetric con gura-
tions, the lineshape is still modi ed from the LSPR response, but no sharp spectral feature is ap-
parent. Of particular interest in these spectra is the modi cation of the resonance width occurring
as a result of collective radiative coupling. e narrow resonance obtained for the array of 480 nm
periodicity with either air or IPA superstrate medium is an interesting result in this regard.

e extinction spectrum for the array of 480 nm periodicity in IPA was tted with a Lorentzian
to estimate the width of the LSPR (54 nm). is resonance is considerably narrower than what
would be expected from a non-interacting collection of such nanoparticles where inhomogeneous
broadening is quite severe (see gure 5.11). In fact, the resonance width is found to be close to
the value dictated by the gold permittivity alone at this frequency (intrinsic damping, discussed in
chapter 4) as shown in gure 6.9. is narrowing of the LSPR in a collection of particles means that
the effect of radiative damping and inhomogeneous broadening are largely suppressed. e inter-
particle coupling and its effect on the width of the LSPR was studied for dimers of gold particles
by [34, 35], where it was found that the resonance width oscillates as a function of particle separ-
ation. is is due to the fact that the phase relationship between the incident eld and the eld
that is scattered by the neighbouring particle presents an alternate of constructive and destructive
interference as a function of particle separation. When the dipolar eld scattered by one particle
contradicts the incident eld for the other particle, the radiation damping from that particle is
reduced. Further, in the situation where an in nite number of particles participate in the eld ex-
citing each particle, there can be a situation where the eld is completely suppressed in the particle
— this is the situation of transparency observed at the diffraction edge where the extinction is
largely suppressed (in theory, the extinction by an in nite array of dipoles vanishes at the Rayleigh
condition).

6.2.2.2 Thin coating

A measure of the gure of merit of such nanostructures for a sensing application needs to take
into account the high eld con nement around the particles that stems from the excitation of loc-
alised surface plasmons. erefore, it is necessary to try to differentiate between bulk effects and
local effects in the spectral change observed in scattering or extinction measurements. Because
the resonance that arises in these structures involves an interplay between the localised plasmon
resonances and a purely geometrical diffractive coupling, it is not clear whether the sensitivity to a
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Figure 6.8: Effect of varying the superstrate index on the extinction spectra. e red, blue and
green curves correspond to the case where the superstrate medium is respectively air, IPA (n =
1.378), immersion oil (n = 1.46). e different panels correspond to different particle separations
(From top to bottom: 540 nm, 520 nm, 500 nm, 480 nm), and the vertical dashed lines indicate the
diffraction condition in each medium.

local change will be more pronounced than for a single particle response, despite the considerable
reduction in the spectral width previously discussed. To investigate this question I used the coupled
dipole model as experiments aimed at assessing the sensitivity of the arrays to a thin coating have
been hindered by the apparent requirement of a homogeneous surrounding medium. In order to
describe the in uence of a thin coating on the particle response in the coupled dipole model, I
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Figure 6.9: LSPR width in isolated particles and in ensembles. e solid line shows the calculated
intrinsic damping (equation 4.3) for gold (permittivity values from Johnson andChristy). Note that
the damping due to surface roughness is not taken into account. Red symbols are single particle
measurements on colloidal nanorods and spheres from Sönnichsen et al. [33]. Orange ellipses are
typical single particle dark- eld scatteringmeasurements fromEBL-fabricated nanorods presented
in chapter 4. e blue symbol is obtained from the extinction curve of the array of gure 6.8 (pitch
480 nm in IPA). Inset: Lorentzian t of the resonance, the width is estimated as 54 nm.

used the polarizability as derived by Bohren and Huffman for a coated ellipsoid in the quasi-static
approximation [31],

α= V2
(ϵc − ϵd )

�
ϵc +(ϵm − ϵc )(L 1− f L 2)

�
+ f ϵc (ϵm − ϵc )�

ϵc +(ϵm − ϵc )(L 1− f L 2)
�
[ϵd + L 2(ϵc − ϵd )]+ f L 2ϵc (ϵm − ϵc )

, (6.6)

where ϵc ,ϵd ,ϵm are the permittivities of the coating, dielectric environment, and metal core re-
spectively, f = V1/V2 is the ratio of the inner volume (V1) and outer volume (V2) of the two el-
lipsoids, L 1 and L 2 are their respective aspect ratio. e polarizability of equation 6.6 is modi ed
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Figure 6.10: Coupled dipolemodel for the extinction spectra of particle arrays with particles coated
with a thin overlayer. e surrounding environment is water, of refractive index 1.333. e le
panel is for a single gold ellipsoid of semi-axes 60 nm×50 nm×20 nm. e middle and right panels
are for regular, square arrays of respectively 8×8 and 30×30 dipoles, with a spacing between dipoles
of 550 nm.

according to the long-wavelength approximation to take into account dynamic depolarisation and
radiative damping (as discussed in section 3.2.1). Although less accurate than the prescription of
Kuwata et al. [36], this expression for the polarizability allows us to approximate the effect of a thin
coating on the particles whilst maintaining a reasonable agreement with more elaborate models
(see gure 3.4).

Figure 6.10 presents extinction spectra calculated with this model for two different con gura-
tions: a bare gold ellipsoid in water (red), and the same particle with a 5 nm coating of refractive
index 1.5 typical of biological samples [37] (blue curves). e three panels differ in the number of
dipoles considered in the model: panel (a) is the result for a single dipole; panel (b) is the result for
a regular array of 8×8 identical dipoles; panel (c) for 30×30 dipoles.

e le panel presents the red-shi of the LSPR when a thin overlayer is added to the bare
gold particle. is red-shi is accompanied by an increase of scattering intensity as the scatterer
gains in volume. e middle panel shows the modi cation of the resonance curve when the scat-
tering sample consists of a regular square array of 8×8 particles separated by a distance of 550 nm.
Here the interaction between dipoles results in a modi cation of the resonance spectrum near the
diffraction edge associated with the periodicity of the scatterers. We note that the change of in-
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tensity in the extinction curve upon addition of a thin coating is increased at the wavelength of the
diffraction edge. e spectral shi is however not modi ed substantially. In the right panel the
coupling is considered for and array of 30×30 dipoles. e diffractive peak is very intense (twice
as intense as the extinction maximum for a single particle response), and narrow. e intensity
change when adding a thin coating is appreciable, however the spectral shi of the diffractive peak
is much smaller than the spectral shi of the main LSPR. From this calculation, it is apparent that
the position of the diffraction edge with respect to the LSPR will have a strong in uence on the
intensity of the sharp extinction peak. is question is investigated in gure 6.11 by varying the
dipole spacing, and observing the in uence on the intensity and shi of the diffractive peak when
adding successive overlayers.

As the diffraction edge is moved further from the LSPR, the spectral shi of the diffractive peak
due to the presence of a thin layer is less and less important and the geometrical origin of the peak
dominates (which is sensitive to a bulk refractive index change). e relative change of intensity
of the peak seems mostly unaffected, although a more rigourous calculation should be performed
to check the validity of the coupled dipole model in this regime. e absolute intensity of the
diffractive peak is seen to vary in proportion to the single particle extinction at that wavelength,
and is therefore weaker for wavelengths further from the main resonance. Inasmuch as the local
sensitivity determines the performance of a sensor, we can conclude that a compromise should be
found between the intensity of the diffractive peak, its width, and the shi in its spectral position
due to the presence of a thin overlayer.

6.3 Conclusion and outlook of further investigations

In this chapter I presented experimental evidence for narrow spectral features in the optical re-
sponse of periodic metal nanoparticle arrays, in contrast to the general broadening of the spectral
response in dense ensembles of particles studied in chapter 5. In fact, the spectral width of the
diffractive feature is found to be much narrower than the LSPR associated with a single, isolated
nanoparticle (chapter 4). e periodic arrangement of nanorods introduces an interference fea-
ture close to the diffraction edge, and its position with respect to the localised plasmon resonance
was varied by changing the particle separation. e technique of electron-beam lithography can
be used with sufficient control over the particle positions and sizes for this long-range interaction
between a large number of particles to be very pronounced. In chapter 8, I will present a study of
the effect of disorder in particle positions and in particle sizes on the extinction properties of these
diffractive arrays.

e in uence of the refractive index of the environment of the nanoparticles was assessed by
conducting experiments varying the bulk index of the superstrate. An asymmetric index con g-
uration leads to a much less pronounced coupling between particles, which is in fact suppressed
for moderate index contrast. e study of this transition behaviour should be the subject of fur-
ther theoretical and experimental studies. In particular, the non-existence of a surface mode in the
asymmetric con guration appears to be related to the Fresnel coefficient at the interface of the two
media, for a grazing angle of incidence. Vecchi et al. [38] recently studied the dispersion properties
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Figure 6.11: Coupled dipole model for the extinction spectra of particle arrays with particles
coated with a thin overlayer. e arrays consist of 10×10 gold ellipsoids of semi-axes
60 nm×50 nm×20 nm immersed in water (index 1.333). ree periodicities are considered:
550 nm (top), 570 nm (middle), 590 nm (bottom). For each case, a coating of refractive index 1.5
is added to the particles with increasing thickness: bare particle (red curves), 4 nm (blue curves),
8 nm (green curves).

of the surface mode supported by such diffractive arrays, and found that the requirement of an ho-
mogeneous index con guration may not be as stringent as suggested by the experiments presented
in this chapter, at least for a thin coating of the particles.

e sensitivity of the sample to a sub-wavelength coating was evaluated by numerical model-
ling. It was found that the diffractive arrays of gold nanoparticles may offer a general improvement
over the single particle response in terms of signal-to-noise ratio, but at the expense of the spec-
tral shi. It is however not yet demonstrated that such a sensing system can be realised within
an asymmetric environment (a requirement for such supported particles). e discussion of the

137



6.3 Conclusion and outlook of further investigations

optimal size of the nanoparticles for this diffractive coupling to be maximally efficient in terms of
extinction intensity and sharpness of the observed spectral feature will be treated in chapter 7.

In this study we have developed a picture of the interaction between incident light and an array
of particles that involves a multiple scattering process. In this view several questions would require
further theoretical and experimental work. One of these questions relates to the coherence of the
scattering process. e spatial and temporal coherence of the illumination should in uence the
coupling between particles since a collective coupling requires a coherent superposition of partial
waves scattered from spatially separated sources. e phase relationship across the array should
be maintained for the multiple scattering process to be efficient. In particular, for arrays of a very
large extent, there may be a limitation of the long-range interaction due to a loss of coherence. e
nite lifetime of the LSPR, and also the broadband illumination may both play a limiting role.
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“But in space light is light and doesn’t know where it came from.”
Richard P. Feynman 7

Diffractive arrays of gold nanorods: a
study of the spectral lineshape

T     in a diffractive array was shown in chapter 6
to yield a dramaticmodi cation of the optical response of gold nanorodswhen the periodicity

is commensurate with the wavelength of excitation of localised plasmon resonances (LSPR). In the
previous chapter, we observed the in uence of the periodicity on this geometrical resonance, and
how a sharp spectral feature can result from the coherent coupling of the particles. e intensity
of this peak appeared to drop as the diffraction edge was moved away from the LSPR, for arrays
of a given particle shape and size. It was also noted in chapter 6 that the area under the extinction
curve (normalised by the occupancy) appears constant when changing the separation. An obvious
question arises as to how the particle size and aspect ratio in uence the integrated extinction, as
well as the intensity and width of the sharp spectral feature.

In this chapter I will present further experiments and simulations on such regular arrays of
nanoparticles that aim at a better understanding of the spectral lineshape. Experiments and sim-
ulations will be presented for particles of varying sizes that will clarify the role of the LSPR in the
diffractive coupling. I will also investigate the dispersion of the modes by varying the angle of
incidence, and show that the small secondary peak observed in chapter 6 was due to a slight mis-
alignment of the optical setup. Finally, a sum rule for the integrated extinction of the particles will
be discussed.

7.1 In uence of the particle shape and size

In studying the sharp spectral feature and its dependence on the different parameters, it is useful to
de-correlate the effect of particle separation, particle volume, and particle aspect ratio. is study
was performed using a wide spread of particle sizes.
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7.1 In uence of the particle shape and size

Figure 7.1: Scanning electron micrograph of an array. e particle separation for this par-
ticular array was 500 nm, the particle sizes measured for the 25 particles displayed here are
60±3 nm×40±3 nm×30±5 nm.

e geometrical shapes were retrieved from scanning electron microscopy (SEM) measure-
ments ( gure 7.1). Twenty- ve particles per array were scanned, and a shape recognition soware,
imageJ, was used to characterise their in-plane geometry with three parameters: the short and long
axis of an ellipse, together with an estimate of the area. e height of the particles was estimated
during the deposition process with a calibrated crystal monitor, and veri ed to be 30±5 nm by a
tilted SEM.is procedure allows us to describe each particle array with an ellipsoid of average axes
a and b , together with an estimate of standard error on these parameters (typical tted ellipses are
shown in red in gure 7.1). e range of variation of the particle sizes is shown in gure 7.2. For
this study, 60 arrays were characterised, with parameters the pitch varied from 480 nm to 560 nm,
the short axis of the particles (four different nominal sizes from 60 nm to 120 nm), and the long
axis of the particles (three different nominal sizes from 120 nm to 160 nm).

As shown in gure 7.2, the actual distribution of sizes vary considerably due to the sensitivity
of the electron-beam lithography process. First, the particle shape and size differ from the nominal
rectangular design, because of the limitations of resolution discussed in chapter 4 (sensitivity of the
resist, exposure by secondary electrons, metal deposition, etc.). Second, we note that for a common
value of the nominal size, the real size and shape differs for arrays of varying particle separations.
is artefact of the fabrication process is attributed to the proximity effects in the exposure of the
resist by the electron-beam (secondary electrons backscattered from the substrate contribute to
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7.1 In uence of the particle shape and size
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Figure 7.2: Average in-plane shape parameters retrieved from SEM measurements on 60 arrays,
with error estimates considering the dispersion measured from 25 particles per array.

exposing the surrounding resist). Such effects can be partially corrected by a careful weighting of
the exposure dose as a function of the array density. Finally, the dispersion of sizeswithin each array
is considerable. Two major sources of such variation have been identi ed. (i) e electron-beam
provides a non-uniform exposure across the write- eld. is effect is limited by using a restricted
part of the write- eld (35 µm for a write- eld of 50 µm). (ii) e granularity of the particles formed
by thermal evaporation yields a variability of the shapes. By measuring 25 particles for each array
I could estimate the average size of the particles and the distribution of the particles sizes for each
array (this will prove especially useful for the experimental veri cation of the sum rule).

With such a range of particle sizes, I was able to compare the extinction spectra from two
particles of different aspect ratio that had the same volume. e use of a polariser allows one to
additionally compare the two in-plane axes for a given particle. e comparison is shown in gure
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7.1 In uence of the particle shape and size
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Figure 7.3: Extinction spectra, normalised by the occupancy for two polarisation states (long-axis:
solid lines, short-axis: dashed lines). e colours refer to two arrays of particles both of pitch
540 nm for which the particle volume is approximately the same, but the particles have different
aspect ratios.

7.3. e more elongated particles exhibit a red-shied resonance along the long axis, the short axis
being blue-shied.

As expected the particle volume alone is not sufficient to uniquely determine the observed
spectral features. In particular, the sharp peak near the diffraction edge is much more intense for
the case of the higher aspect ratio particle, at a constant volume and constant particle separation.

In these measurements, the peak intensity is mainly dictated by the proximity of the diffraction
edge to the LSP resonance, which in turn is determined by the particle polarizability, a function
of both the volume and aspect ratio (equation 3.44). In fact, we expect that the radiative coupling
between particleswill depend on the overlap between the propagating eld and themode associated
with the localised plasmon resonance. is coupling is the scattering cross-section of the particles,
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7.1 In uence of the particle shape and size

which can also be thought of as a probability of interaction between a propagating photon and the
LSPR.

Between the main LSPR and the diffractive peak lies a small secondary peak that was already
observed in gure 6.6. is spectral feature was also noted by Félidj et al. [1], where it was attrib-
uted to an asymmetric con guration for the surrounding refractive index. Because this study only
considers an homogeneous environment this cannot be the case here. In the simple semi-analytical
coupled dipole model presented in gure 6.3, the peaks in the extinction spectrum were attributed
to poles in the effective polarizability (equation 6.3). is situation occurs when the inverse po-
larizability intersects with the array factor, a situation that allows three solutions (the vertical lines
in gure 6.3). e middle crossing point occurs when the imaginary part of the array factor is
large, and the associated resonance is therefore strongly damped if at all observable. Markel de-
veloped a similar picture in a theoretical study of the divergence properties of the array factor [2].
e strength of this secondary peak can be arti cially increased by scaling the imaginary part of the
array factor — there is however no clear physical ground for doing so, and this explanation of our
experimental observations remains highly speculative. To further evaluate the departure of the ob-
served spectral lineshape to our theoretical predictions, I used an accurate multiple scattering code
developed by J. García de Abajo, which canmodel the re ectance, transmittance and absorbance of
an in nite periodic array of particles. A set of modelled spectra is shown in gure 7.4. e spectral
lineshape is very similar in re ection, extinction and absorption, and presents the same charac-
teristics features observed in experiments ( gure 6.6), and discussed in the context of the coupled
dipole approximation ( gure 6.5). e more accurate modelling used here allows us to observe the
ne behaviour of the divergence in the spectral lineshape near the Rayleigh diffraction condition.

In particular, we observe that with sufficient resolution, the array exhibits complete transparency at
the diffraction condition (vanishing re ection and absorption). is astonishing result implies that
the electromagnetic eld vanishes inside the particles at this particular frequency, although a single
particle would present a strong absorption and scattering due to the excitation of the LSPR. e ra-
diative coupling between particles conspires to annihilate the net eld at each particle’s location.
is very interesting effect requires further studies, in particular for the near- eld distribution in
the frequencies close to the diffraction condition.

ese numerical simulations also con rm the narrowing of the diffractive peak with increasing
particle separation. A quantitative comparison of this trend with the experimental results will be
shown in gure 7.9.

e inset of gure 7.4 presents the detail of an absorbance spectrum (pitch 620nm) near the
diffraction edge. In addition to the very narrow minimum, a small spectral feature appears on the
short-wavelength side of the diffraction edge. is peak is extremely weak in comparison to the
diffractive peak (on the long-wavelength side of the diffraction edge), and cannot be identi ed with
the secondary peak observed in the experiments.

ese simulations were performed for in nite periodic arrays, illuminated at normal incidence.
In the next section I will present experimental data and numerical results at small oblique incidence
that provide a better interpretation for this secondary peak.
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7.2 Angular response
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Figure 7.4: Simulated re ectance, transmittance, absorbance of a regular array of gold nanorods,
using the program pxtal courtesy of J. García de Abajo. e dipole polarizability was obtained
from a T-matrix calculation for a 120 nm×80 nm×50 nm gold nanorod with rounded corners
(10 nm radius of curvature) in homogeneous refractive index 1.46. e multiple scattering pro-
gram assumes an in nite square array of pitch h . e sharp spectral features are fully resolved with
a supplementary ne wavelength sweep around the points of divergence of the array factor. e
inset shows the absorbance of an array of periodicity 620 nm near the diffraction edge.

7.2 Angular response

e incident light that is scattered by the subwavelength particles can excite surface plasmons at
the interface between the particles and the surrounding medium without the need for a phase-
matching apparatus, as is the casewith surface plasmons propagating onplanar surfaces ( gure 2.10).
is convenient coupling of free radiation to the LSPR occurs because of the high curvature of the
interface: as an incident plane wave is scattered by a subwavelength particle, the angular spectrum
of the scattered eld contains inhomogeneouswaveswith a range of k vectors that enables the coup-

144



7.2 Angular response
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Figure 7.5: Schematic of the experimental setup. e incident light is polarised so as to excite
the particles with an electric eld along the long axis of the nanorods. e tilt angle (θs for s-
polarisation and θp for p-polarisation) is varied by placing a spacer (substrate) on one side of the
sample.

ling to the surface plasmon mode. Further, the surface plasmon dispersion is strongly modi ed by
the curved geometry of the particle— in fact, the particle plasmonmode resembles a standingwave
constrained by the edges of the particles [3–5]. e particle plasmon mode is therefore commonly
considered to have a at dispersion over a wide range of wave-vectors [6]. In the situation of a
2-dimensional array of particles, however, the electromagnetic eigenmode of the structure is delo-
calised and forms a surface mode [7]. It is therefore interesting to see the effect of varying the angle
of incidence, i.e the in-plane component of the wave-vector. e coupling to the surface mode as
a function of angle of incidence provides a map of the dispersion of the surface mode [8–10].

To perform these experiments I used the basic setup described in chapter 6 and reproduced in
gure 7.5.

e angle of incidence is varied in discrete steps to assess the deviation away from normal
incidence and in particular its repercussion in the spectral features near the diffraction edge. e
incident light is polarised so that the projection of the electric eld exciting the particles in the plane
of the substrate is always aligned with the long-axis of the particles. A few transmission spectra for
different angles of incidence are shown in gure 7.6.

e most pronounced variation is observed for s-polarisation. We observe the presence of
three dips in transmission, and their spectral position is dependent upon the angle of incidence.
e onset of the +1 and −1 diffracted orders is described by the following equation,

k = k∥± 2π

h
, (7.1)

where k is the wavenumber in the medium, k∥ the in-plane component, and h the grating period.
For a given incident angle, this condition dictates the pitch h for which the rst order of diffraction
emerges at a grazing angle.
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7.2 Angular response
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Figure 7.6: Experimental data on the in uence of the tilt in s- and p-polarisation for a periodicity
of 520 nm. e (approximate) rst order diffraction edges for each angle of incidence are indicated
by vertical coloured dashed lines. e diffraction edge at normal incidence is also shown in grey
dashed lines.

e intensity of the three dips in transmission is also strongly modi ed and redistributed. At
normal incidence, twominimamerge andwe can conclude that the small feature noted in gure 6.6
was in fact due to a slight off-normal incidence.

e case of p-polarisation reveals only a weak change in the overall intensity that could be
attributed to a weakened excitation of the long-axis LSPR as the incident electric eld has an out-
of-plane component with respect to the substrate. We can understand the dispersion of the modes
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7.2 Angular response
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Figure 7.7: Schematic dispersion of the LSPR modi ed by a periodic grating. e unperturbed
localised plasmon resonance spans the horizontal grey area. e light-line and the diffracted or-
ders ±1 are represented by ne grey lines. e dashed red line corresponds to light near normal
incidence. is light crosses the diffracted orders +1 and −1 at different energies. e spectral
lineshape resulting from the interaction between the LSPR and the diffracted light-lines is shown
schematically on the right.

by invoking a schematic dispersion diagram for the the LSPR in the presence of a periodic structure
as depicted in gure 7.7. e LSPR mode is represented as a broad, at mode on this diagram. e
dispersion-less nature of this localised resonance can be understood as a characteristic standing-
wave behaviour. e light cone ω = k∥.c delimits the region for which free-propagating light can
couple with the structure. e effect of the periodicity on the allowed electromagneticmodes of the
structure is to provide an additional momentum to light with momentum greater than 2π/h . In
effect, this results in a back-folding of the light line at the boundary of the Brillouin zone (k∥ = 2π

h ).
is results in two lines crossing the y−axis at k∥ = 0 (normal incidence). When the periodicity
is such that the crossing of the diffracted light cone occurs in the spectral region of the LSPR, the
modes of the structure are modi ed and this results in a dip followed by a maximum in the ex-
tinction curve (the Wood anomalies). We can now understand that a slight deviation from normal
incidence results in two-crossing points: the degeneracy between the +1 and -1 diffracted orders
is broken, and the incident light suffers two intercepts with the ±1 diffracted orders. is descrip-
tion is further supported by the coupled model dipole shown in gure 7.8 which reproduces the
experimental results for a nite array of dipoles illuminated with s-polarised light for a range of
incident angles. A tilt angle as small as 1° is sufficient to observe a secondary peak similar to that
of the experimental results of chapter 6.

7.2.1 Width of the resonance

Of particular interest in the optical response of such diffractive arrays is the width of the sharp
spectral feature that seems to contradict the limitations of the LSPR width discussed for single
particles in chapter 4. Further, in chapter 5 we observed an appreciable broadening of the LSPR in
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Figure 7.8: Modelled extinction spectra of an array of gold nanorods using a coupled dipole model.
e tilt angle is varied from 0° to 4° for s-polarisation. e array (pitch 520 nm, surrounding me-
dium 1.5) comprises 441 gold ellipsoids of semi-axes 60 nm×50 nm×20 nm. e dashed vertical
lines indicate the position of the diffraction edge (orders ±1).

collections of particles due to the combination of inhomogeneous broadening and particle interac-
tions. e possibility of reducing the LSPRwidth in a large array of particles is therefore particularly
interesting.

e diffractive peak is generally quite asymmetric and resides on a varying background (LSPR).
It is therefore difficult to unambiguously de ne its width. I chose to measure the distance between
the peakmaximum and the diffraction edge, which underestimates the width, but seems to provide
a consistent measure for all samples. In gure 7.9 the evolution of the width is shown as a function
of particle separation for 3 different particle sizes and two polarisations.

We note that the width (as de ned above) decreases with increasing distance from the diffrac-
tion edge to the LSPR. A linear t leads to a slope that depends on both the volume and the aspect
ratio of the particles. Furthermore, we note that the trend is not linear. Markel suggested (for
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7.3 A sum rule for metallic ellipsoids
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Figure 7.9: Measured half-width of the diffractive peak (points) for arrays of periodicities 480 nm
to 560 nm in 1.46 surrounding index. ree different particle sizes are considered (semi-axes
55 nm×55 nm×20 nm, 60 nm×55 nm×20 nm, 65 nm×55 nm×20 nm). e incident light is po-
larised along the long axis (red) and short axis (blue). e solid lines are the numerical result from
modelling arrays with the above parameters using the pxtal multiple scattering program [11].

linear, in nite chains of spheres [2]) an expression of the form,

width ∼ h exp

�
−C

h3

ℜ (αλ=h )

�
,

where h is the particle separation, C is a constant, andαλ=h is the polarizability of the particle at the
diffraction edge wavelength. e polarizability is however unknown from the experiment, I have
not been able to verify the validity of this expression for 2-dimensional, nite structures. With the
rigourousmultiple scattering code used in gure 7.4, it was however possible to con rm the general
trend of the width of this diffractive peak (solid lines in gure 7.9). An analytical expression should
be readily obtained and will be the subject of future investigations.

7.3 A sum rule for metallic ellipsoids

In all the spectra obtained from arrays with a common particle size, we noted the interesting fact
that the normalised extinction spectra present a constant area over the spectral range of interest. I
will now discuss how this observation can be linked to amore general sum rule of extinction which
relates the total extinction of light caused by metallic nanoparticles to their geometrical shape. In
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7.3 A sum rule for metallic ellipsoids

the remainder of this chapter, I will test this interpretation both experimentally and with the help
of numerical modelling.

Sum rules can provide powerful insight on the average behaviour of a complex optical or
quantum system [12–14]. Perhaps the most well known optical sum rule is the one that relates the
real part of the refractive index to the integrated absorption over all frequencies [13], also known
as Kramers-Kronig (KK) relation. In the context of scattering by particles, Purcell [15] rst de-
rived the sum rule for the extinction of light caused by dust particles in an attempt to characterise
the constitution of the interstellar medium. is is an example where sum rules can give some
quantitative answers to a seemingly intractable problem: very few assumptions can be made on
the constitution and shape of the particles, the only information on the scattering medium is taken
from optical measurements at great distance.

In the samples fabricated for this thesis, we can test more directly a similar sum rule. e
particles are produced with a control over the distribution of shapes and sizes using the fabrication
technique of electron-beam lithography.

e usual derivation of the sum rule of extinction by particles was rst given by Purcell [15],
Bohren and Huffman [16], and recently given a more general form by Markel [17]. Although this
sum rule relies only on very general properties of the dielectric function and of the scattering pro-
cess, its derivation was recently re-envisaged by Mishchenko [18] who pointed out a basic logical
aw in the reasoning. Despite this severe warning, I will now review the usual derivation that

provides the most plausible argument to date for this conjecture.
Let us consider the extinction of light by a single spheroidal particle of semi-axes a , b and c

illuminated normally to its c axis. e scattering amplitude matrix F relates the far- eld spherical
wave scattered by the particle to an incoming plane wave [16, 19],

Escat =
exp(i k · r)

r
[F]Einc. (7.2)

e components of this matrix depend on the frequency, refractive indices, polarisation, and on
the angle between the incident and scattered beam. A consequence of the causality constraint on
the optical response of a scattering system is the general relation that exists between the real and
imaginary parts of the scattering amplitude [12, 16] which form a Hilbert transform pair,

ℑ� f (ω)/ω2
�
=
−2ω

π
P
∫ ∞

0

dΩ
ℜ� f (Ω)/Ω2

�
Ω2−ω2 , (7.3)

where f stands for the component of the scatteringmatrix relevant to the particular orientation and
polarisation state of the incident eld, andP denotes the principal value of the improper integral.

Mishchenkopoints out that such a causality relation cannot be directly statedwithin this frequency-
domain formulation of the scattering process [18] where all monochromatic elds have in nite
duration in time (past and future). In particular, the dichotomy of the total eld into an incident
eld and a scattered eld is a mathematical construction that does not imply any causal relation-

ship. A rigourous derivation of the sum rule should therefore proceed from the time-dependent
analogue of the volume integral equation but has not yet been proposed.
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7.3 A sum rule for metallic ellipsoids

Pursuing the usual argument, we consider next the optical theorem, which relates the far- eld
extinction to the forward scattering amplitude f (0°,ω). It expresses the fact that extinction is the
result of the interference between the incident and scattered wave in the exact same direction[16],

σext(ω) =
4π

k 2ℜ
�

f (0°,ω)
�

. (7.4)

Combining this expression with equation 7.3 leads to,

ℑ� f (ω)
�
=
−ω3

π2c 2P
∫ ∞

0

dΩ
σ(Ω)
Ω2−ω2 . (7.5)

e last step in the derivation is to relate the scattering amplitude to the shape of the particle.
We wish to take the electrostatic limit of the le-hand side in equation 7.5, as the response of the
scatterer can then be exactly described as a dipole of polarizability αstatic,

f (0°,ω) =
−iω3

c 3 αstatic, (7.6)

where αstatic is given by,
αstatic =

V

3

ϵm − ϵd

ϵd +L(ϵm − ϵd )
, (7.7)

with V the particle volume, and L a shape-dependent depolarisation factor related to the semi-axes
a , b , and c by the following formula,

L=
ab c

2

∫ ∞
0

d q

(l 2+q )
p
(a 2+q )(b 2+q )(c 2+q )

, l = a ,b , c . (7.8)

Combining equations 7.5 and 7.6, and changing the integration variable to wavelength leads to the
following sum rule, ∫ ∞

0

σ(λ)dλ∝αstatic. (7.9)

In the case ofmetallic particles, the static dielectric function is in nite due to the free surface charge
perfectly screening any external DC eld. is allows us to further simplify equation 7.9 by evalu-
ating equation 7.7 in the limit ϵm →∞, which simply leaves αstatic = V /L, remarkably irrespective
of the metal and dielectric environment. Consequently, the sum rule we wish to consider reads,∫ ∞

0

σ(λ)dλ∝ V

L
. (7.10)

A similar sum rule was recently expressed in terms of radar cross-sections for meta-materials at
micro-wave frequencies, and tested experimentally [20]. A promising study would be to test ex-
perimentally the validity of equation 7.10 over several orders of magnitude by using metallic nan-
oparticles at optical frequencies and metallic antennas at micro-wave frequencies with an identical
shape.
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7.3 A sum rule for metallic ellipsoids

7.3.1 Numerical veri cation of the sum rule for isolated prolate ellipsoids

Extinction spectra were calculated using an accurate T-matrix code [21] for a large number of
single nanoparticles in the form of prolate ellipsoids. e prescription of the dielectric function of
the scatterers and surrounding medium has proven very important. Because the sum rule equa-
tion 7.10 relies on the implicit assumption that the dielectric function obeys a Kramers-Kronig
relation, one cannot use a dielectric function that is only valid in a limited range of wavelengths.
For instance, most calculations presented in this work made the assumption of a non-dispersive
and non-absorbing surrounding environment of index 1.5. is situation describes well the op-
tical properties of glass and index-matching uid in the optical and near-IR regimes, but cannot
be a physical solution over a wider range of frequencies. From the KK relations, a refractive index
different from unity at a given frequency must be accompanied by an absorption band at a higher
energy. Further, the refractive index of a material must be a decreasing function of frequency (with
the local exception of regions of anomalous dispersion near strong absorption bands). I therefore
set the surrounding medium to vacuum.

e choice of the dielectric function of the scatterers faces further complications. e exper-
imental values of the dielectric function of gold suffer two major problems in this regard: they
span only a limited range of wavelengths; they have no a priori justi cation for satisfying the KK
relations accurately. In fact, it is doubtful that the measurement of the real and imaginary parts of
the dielectric function is subject to identical limitations, more probably the imaginary part is oen
overestimated due to experimental artefacts (for instance, surface roughness causes an increased
loss channel [22]). A few simulations were performed using the permittivity from Johnson and
Christy but the (relatively small) deviation from the sum rule could not be tested reliably.

I therefore used a simple Drude model of the form,

ε= 1− ω2
p

ω2+ iωγ
, (7.11)

with γ= 1.0×1014 rad/s the damping parameter, andωp = 1.5×1016 rad/s the plasma frequency.
Note that the absence of a low-frequency background permittivity makes this function unsuitable
for a description of gold. is dielectric function is shown as an inset in gure 7.10. As com-
pared to the Drude model for gold in the visible, the plasma frequency chosen here lies in the deep
UV; consequently the expected Fröhlish frequency of a subwavelength particle occurs at shorter
wavelengths (around 200 nm).

Figure 7.10 presents a small subset of the extinction spectra that were obtained in this numer-
ical simulation. e range of particle sizes was dictated by three parameters. (i) e wavelength
range of the simulation must span a wider range than the width of the LSPR so that the extinction
curve is negligibly small on either side of the LSPR. (ii) For an accurate determination of the in-
tegrated extinction, a large number of wavelengths must be simulated (1000 points per spectrum
in this case). e computer time required to run such a simulation restricts the number of particle
sizes. (iii) More importantly, the convergence of the T-matrix method is known to deteriorate for
highly elongated particles, and particles with a large permittivity [23]. I therefore restricted the
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Figure 7.10: Calculated extinction spectra for 10 ellipsoids of constant volume and increasing as-
pect ratio. e top panel if for the incident polarisation along the long axis, the bottom panel is
for the corresponding short axis. e inset presents the dielectric function of equation 7.11 with
parameters γ= 1.0×1014 rad/s andωp = 1.5×1016 rad/s.

study to small aspect ratios, similar to the ones presented in the experimental data. Other accurate
modelling techniques such as the method of separation of variables in spheroidal coordinates [24]
could be used to extend the range of simulated parameters.

Figure 7.11 presents the result of these simulations as a test for the sum rule of equation 7.10. In
the x-axis the ratio volume over depolarisation factor is calculated for the various particles run in
the simulation (equation 7.8). In the y-axis the numerical integration of the extinction spectra for
each particle is plotted as a function of particle volume and aspect ratio (both x- and y- axes are on
a logarithmic scale for clarity). A clear linear correlation suggests the validity of equation 7.10 for
the range of parameters used in this simulation, with the notable restriction to small aspect ratios
and a basic Drude model dielectric function.
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Figure 7.11: Testing of the sum rule from the results of T-matrix modelling on prolate ellipsoids of
aspect ratio 1 to 2.2, for different volumes (indicated as an equivalent-volume sphere radius in the
legend). e parameters are the same as for gure 7.10.

As a comparison, a similar simulation was performed with two different dielectric functions
obtained from a best t of the experimental data for gold and silver in the range 700 nm—1200 nm.
Here the dielectric function is modelled by a Drude model with a background permittivity. In
order to match a more physical situation, the surrounding medium was set to a permittivity equal
to this background dielectric constant (as a result, the particle is invisible to radiation in the high-
frequency regime).

e results for this simulation are shown in gure 7.12. We see that the linear relationship
between the integrated extinction and the inverse depolarisation factor holds for particles of small
volume. e larger volumes considered in this simulation depart from the linear trend as the as-
pect ratio is increased. Several possible causes for this discrepancy have been considered. First,
it may be that a mechanism for extinction manifests itself outside the range of integration, how-
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Figure 7.12: Testing of the sum rule from the results of T-matrix modelling on prolate ellips-
oids. e dielectric functions were obtained from a best t of the experimental data for gold
(γ= 1.128×1014 rad/s,ωp = 1.3355×1016 rad/s, ϵ = 8.0933) and silver (γ= 1.0783×1014 rad/s,
ωp = 1.3220×1016 rad/s, ϵ = 3.4667) in the range 700 nm—1200 nm. A linear t to the data is
shown for each subset with constant volume.

ever the Drude model should not yield any other response than the excitation of the LSPR in this
frequency range as it describes the material as simply a collection of free electrons. e prescrip-
tion of the surrounding medium having a permittivity equal to that of the background permittivity
of the particles is very important to ensure that no index contrast at high-frequency yields spuri-
ous resonances (such as whispering gallery modes). A possible cause of departure from the linear
relationship is the failure of the numerical model to accurately calculate the extinction of larger
particles. is numerical code has however been thoroughly tested in this range of size paramet-
ers and aspect ratios, and cannot explain the large discrepancy in gure 7.12. We are le with the
possibility of an invalid assumption in the derivation of the sum rule for this particular form of the
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dielectric function. e presence of higher order resonances in the spectra of the larger ellipsoids
modelled in this simulation should not affect the validity of the sum rule as the static limit is not
used as an approximation for the extinction cross-section at high frequency but only for the exact
static limit in the Kramers-Kronig relation.

7.3.2 Experimental results on 2-dimensional arrays

e experimental veri cation of this sum rule is difficult to achieve with a single particle as the ex-
tinction cross-section is much smaller than a diffraction-limited collimated beam. e very weak
signal-to-noise ratio obtained in transmission measurements is only manageable when one probes
the extinction by a collection of closely separated particles. When the particle separation is suffi-
cient that no strong interaction and multiple scattering substantially contribute to the scattering,
this simply leads to an inhomogeneous broadening of the extinction spectrum re ecting the dis-
tribution of scattering responses in the sample. With particles of noble metals such as gold and
silver in the visible, however, the distance required for the particles not to interact is rather large,
typically around one micrometer. is is due to the fact that these nanoparticles act as very effi-
cient scatterers, they are in fact the nanoscale analogues of antennas. In this work, I considered
the optical extinction by the particles arranged in square arrays of varying inter-particle spacing.
As we saw in this chapter and in chapter 6, such con guration can produce remarkable spectral
features that result from the interplay between the scattering properties of the individual particles,
and the geometrical resonance arising from the periodical arrangement of scattering centres. It is
therefore a challenging test for our sum rule, as the scattering medium displays strong radiative
coupling between the particles that could be described as a non-local effective permittivity [25].

Using the formula 7.8 themean depolarisation factor can be evaluated for each array of particles
together with an estimate of the error, using the measurements of gure 7.2. e evaluation of the
integral is more problematic: the sum rule is truly valid only if one considers all the frequencies
from 0 to∞. Here, I make the strong assumption that the main difference in the optical response
of the different particle arrays is dictated by the contribution of the surface plasmon modes in the
optical regime. Under this assumption, the extinction spectra of different arrays can be compared
in the same spectral window provided they display a constant baseline trend. e numerical in-
tegration was performed over the range 500 nm–900 nm, limited by the spectral window of the
spectrometer.

e correlation between the integrated area and the calculated depolarisation factors is shown
in gure 7.13. A general offset between particles of different volumes and different particle sep-
arations is noticeable. e latter can be attributed to the normalisation procedure, that assumes
a constant number of particles being sampled by the optical setup (spectrometer slit). A general
offset between particle volumes should also be expected on the basis of the restriction of the sum
rule to a limited spectral window. It is to be expected that other contributions to the overall ex-
tinction will depend on the particle volume. Within the dispersion of the measurements, a clear
linear correlation can be observed that suggests the validity of this sum rule with arrays of metallic
nanorods.
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7.4 Conclusion

e spectral lineshape of the LSPR can be substantially modi ed by coherent radiative coupling
between gold nanoparticles when they are arranged in a 2-dimensional array. In particular, the
presence of grazing diffracted orders for wavelengths commensurate with the periodicity of the
array results in a sharp dip followed by a peak of extinction. In chapter 6 experiments and simula-
tions were presented that discussed the effect of the periodicity on the spectral lineshape, and how
a geometrical resonance (diffraction) arises from the coherent interaction between scatterers.
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A small deviation from normal incidence lis the degeneracy between diffracted orders and
results in a double peak near the diffraction condition at normal incidence. is results obtained
for transmission measurements near normal incidence explains the presence of a secondary peak
in the data presented in chapter 6. e dispersion map of the surface mode that interacts with the
LSPR was recently further investigated by Vecchi et al. [7].

In this chapter I also presented experiments and simulations that elucidate the role played by
the scattering properties of the particles. In particular, a comparison was presented for two arrays
of particles that have an identical volume and an identical separation between particles. e ex-
tinction spectrum for both cases shows large differences that can be attributed to the in uence of
the aspect ratio of the particles. First, the main peak in extinction associated with the excitation of
the LSPR is red-shied for nano-rods with an increased aspect ratio. Second, the diffractive peak
becomes more intense and broader as the spectral position of the LSPR approaches the diffraction
edge. ird, the integrated extinction per particles is found to scale with the ratio volume over
depolarisation factor. is sum rule was tested experimentally for several arrays of particles with
varying sizes and particle separation. Further, numerical simulations were performed that suggest
the validity of this sum rule for metallic particles using a simple Drude model for the dielectric
function of the particles. e testing of this sum rule requires further investigation, in particular
to verify its accuracy for more realistic prescriptions of the dielectric function and a wide range
of particle sizes. Such experimental and numerical veri cations should be complemented by a
rigourous theoretical derivation of the sum rule.
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“Quand les mystères sont très malins ils se cachent dans la lumière.”
Jean Giono

8
e effect of disorder on the optical

properties of diffractive arrays of gold
nanorods

T-    with a periodicity commensuratewith the
wavelength of resonant excitation of localised plasmons have been shown in chapter 6 and

chapter 7 to exhibit a strong, long-range interaction between particles. In this chapter I investigate
experimentally the effect of varying the geometrical arrangement from a periodic to a disordered
lattice with constant occupancy. e effect of disorder arising from variations in particle size is
also studied for a regular lattice, and the effect this has on the broadening of the spectral lineshape
is discussed. e coupled dipole model introduced in previous chapters is used to interpret the
modi cations in the extinction spectra with respect to the ordered situation considered before.

8.1 Experimental technique

I investigated the in uence of disorder in such structures on their spectral response by conducting
experiments with a controlled distribution of particle positions and particle sizes. e fabrication
procedure is similar to that of chapter 5, only the particle separation is larger. Arrayswere fabricated
with several distributions of particle positions, as well as particle sizes, as illustrated in g. 8.1. e
spatial extent of the arrays was limited to 35 µm×35 µm to minimise the shape variation due to
beam distortion at the edges of the available electron-beam write- eld.

e particles (nominal size 120 nm×80 nm×35 nm) were deposited by thermal evaporation,
with a thin (2 nm) chromium layer being used to improve the adhesion of the gold onto the sub-
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(a)

(b)

(c)

(d)

(e)

1.1µm

Figure 8.1: Scanning electron micrographs of particle arrays. (a) ordered array, i.e. no added dis-
order. (b) 10% disorder in particle positions. (c) pseudo-random positions. (d) 10% variation in
the length of the long axis of the particles. (e) 100% variation in the length of the long axis of the
particles.

strate. e particles were immersed in matching index uid between two substrates so as to obtain
an homogeneous refractive index environment (n = 1.46). e extinction spectra were obtained
by measuring the transmittance at normal incidence with a collimated beam (divergence < 0.1°),
using a 10x objective for the collection optics. A polariser was used in the illumination path to
selectively probe the LSPR associated with the long-axis of the nanoparticles (setup of gure 5.7).

8.2 Results and discussion

Figure 8.2 (a) presents the extinction spectra obtained from arrays that differed only in the degree of
disorder of the particle positions. As was noted in chapter 6, the nominally ordered array presents
a narrow extinction peak on the low-energy wing of the LSPR; this narrow feature occurs because
of the coherent superposition of partial waves scattered from all the particles in the array. In addi-
tion, the extinction due to the excitation of the LSPR can be partially suppressed by the coherent
scattering, which results in a dip in the extinction close to the diffraction edge.

e strict periodicity is broken by displacing the particles from their regular locations in a ran-
dom manner. As this disorder increases the spectral shape evolves around the diffraction edge. In
particular, the sharp peak weakens and blue-shis in the disordered samples as the disorder in-
creases, whilst the extinction due to the excitation of the LSPR regains its full strength. In the limit
of spatially uncorrelated positions (labelled pseudo-random in the gure), we retrieve a smooth
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Figure 8.2: (a) Extinction spectra from ve different arrays of nanoparticles of varying positional
disorder but with constant average occupancy. e deviation from the ordered array is indicated
in the legend as a percentage of the nominal regular particle separation (550 nm). e vertical
dashed lines indicate the <1,0> and <1,1>diffraction edges for the periodic array in a homogeneous
environment (refractive index 1.46). e nominal particle sizes were 120 nm× 80 nm×35 nm. (b)
Calculated extinction spectra using a coupled dipole model with the same parameters.

spectrum characteristic of an inhomogeneously broadened LSPR response. ese results are in
good agreement with previous investigations on the effect of positional disorder in the optical re-
sponse of metallic gratings (Nau et al. [1]). e design of each disordered con guration studied
here was made so as to prevent overlap between particles, as this would introduce an additional,
undesired distribution of particle sizes. e spatial pattern of the pseudo-random con guration
was drawn from a Strauss point process [2, 3] which allows us to minimise the spatial correlation
of the particles within the constraint of an exclusion zone around each particle.
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Figure 8.2 (b) is the result of a coupled dipolemodelwith 441 dipoles arranged in a 2-dimensional
con guration to match that of the experiment. In this approximation, each particle is represen-
ted by a dipole of polarizability α, the expression for which was chosen according to the study of
Kuwata et al. [4] to describe accurately the in uence of the particle size and shape, and the relative
permittivities of the metal and surrounding medium. is prescription includes terms to describe
the dynamic depolarisation and radiative damping that affect particles larger than the Rayleigh
limit (<< λ). e interaction between dipoles is described by the dipolar eld that participates in
the excitation of the other dipoles [5]. e resulting system of coupled linear equations between
the incident eld (E inc) and the dipole moments (P) is solved numerically and the result is used
to calculate the extinction cross section [5], σext ∝ kℑ(E ∗inc · P). A good qualitative agreement is
found between the modelling and the experimental results (compare g. 8.2 (a) and (b)), con rm-
ing the interpretation of the narrow spectral feature as a result of coherent coupling between the
particles mediated by dipolar radiation. e difference in intensity and width of the LSPR between
experiment andmodelling can be explained by the approximations used in themodel for the single
particle response: additional damping mechanisms such as surface roughness and the presence of
the chromium underlayer are not accounted for in the model. e small, secondary peak seen
in the experimental spectra between the two main resonances can be reproduced by allowing a
small deviation from normal incidence (numerical results not shown). Furthermore, this simple
model allows us to gain information on the single particle extinction spectrum that cannot be ob-
tained from experiment. is information is particularly useful in gure 8.3 where we consider an
inhomogeneous distribution of particles.

In gure 8.3(a) I present the effect of a dispersion of particle sizes on the optical spectrum of
ordered arrays. Here it is seen that in contrast with the case of positional disorder the dip in the
extinction curve associated with the diffraction edge never disappears. In addition, all spectral fea-
tures broaden with an increasing dispersion in particle sizes (as discussed in chapter 5). e LSPR
peak is inhomogeneously broadened and red-shied by the wide distribution of aspect ratios and
volumes of the different particles in the array. Consequently, a measurement of the plasmon life-
time in a collection of particles is oen limited by this additional inhomogeneous broadening [6].
e width of the diffractive peak has however a different origin [7], not dictated by the lifetime of
the LSPR but rather by factors such as array size, angular spread of illumination, and dispersion in
the particle LSPR frequencies. It is the latter factor that is altered here by introducing a distribution
of particle sizes.

To illustrate this point, gure 8.3(c) presents the calculated extinction spectra for 5 normal dis-
tributions of disorder in particle sizes. Each curve is the average of 441 spectra obtained in the
dipolar approximation with a range of long-axis lengths. No interaction between the particles is
considered. e underlying distribution of the resonance frequencies of individual particles is dis-
played in gure 8.3(d). We see that a normal distribution of long-axis sizes results in a broadening
of the overall spectrum, and also introduces a red-shi and skewness in the spectral shape. is
can be understood by the non-linear dependence of the LSPR spectrum on the length of the long-
axis of the ellipsoids, in addition to the dispersion of the material permittivity that strengthens
the intensity of the red-shied resonances. Figure 8.3(b) shows the calculated results for the same
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Figure 8.3: (a) Extinction spectra from arrays of nanoparticles with regular positions but variation
in particle sizes. e legend indicates the level of disorder introduced in the length of the long
axis of the nanorods. e vertical dashed lines indicate the <1,0> and <1,1> diffraction edges
for the 550 nm periodic array in a 1.46 refractive index homogeneous environment. e nominal
particle sizes were 120 nm×80 nm×35 nm. (b) Calculated average spectra for 5 distributions of 441
ellipsoids. (c) Calculated spectra for a regular array of dipoles (pitch 550 nm) using the distribution
of individual LSPR frequencies shown in (d).

distributions of particle sizes, but with the dipoles being part of an array of periodicity 550 nm.
e dipolar coupling results in a strong modi cation of the spectral lineshape that qualitatively
reproduces the experimental results. Introducing a distribution of particle sizes means that some
particles will have LSPRs that no longer match well with the period — they thus contribute less ef-
fectively to the coherent coupling, and so by varying the distribution of particle sizes, fewer particles
support a LSPR that can contribute to the coherent coupling.

8.2.1 Array size

An important question to address is the number of particles participating to this coherent interac-
tion in an array. Because the coupling occurs via dipolar radiation, the range of interaction can be
very large. e simpli ed coupled dipole model used in chapter 6 was in fact making the assump-
tion of an in nite array, and we saw that it was able to reproduce most of the features observed in
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Figure 8.4: Coupled dipole model for the spectral response of particle arrays as a function of num-
ber of particles. e dipoles correspond to a gold ellipsoid of semi-axes 60 nm×40 nm×20 nm in
surrounding medium 1.5. e periodicity is 520 nm.

the experiments. From an experimental point of view, the fabrication process makes it difficult to
maintain a good resolution and order beyond the typical array size of 35×35microns. A very inter-
esting experiment would consist in constructing arrays of identical particles and identical spacing,
but with varying dimensions. A technical difficulty was found in that the distribution of particle
sizes is affected by the spatial extent of the array when no special care is taken to compensate for
proximity effects in the electron-beam lithography procedure. is variation of particle sizesmakes
it more difficult to assess the in uence of the array size on the strength of the extinction.

e coupled dipole model that was successfully adapted to model realistic array con gurations
can be used to predict the in uence of the array size on the extinction spectra, in ideal conditions
(no disorder, perfect coherence). In gure 8.4 a set of extinction spectra is presented for an increas-
ing number of particles. It is seen how the coupling of the dipoles in uences the isolated spectral
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Figure 8.5: Coupled dipole model. Intensity of the diffractive peak as a function of number of
particles.

response by splitting the LSPR in two distinct peaks. As the number of particles is increased, the
diffractive peak is more and more intense, at the expense of the extinction in the broad resonance.

In gure 8.5 the peak intensity is plotted against the number of particles along one dimension of
the array (the square root of the total number of particles). e trend is almost linear, and suggests
that the coupling is occurring preferentially along one axis, in good agreement with the far- eld
expression of a dipole which is maximum along the axis orthogonal to the incident polarisation.

8.3 Conclusion

is study provides some insight into the coherent interaction between particles ordered in a peri-
odic, two-dimensional array. In particular we have seen how the periodic arrangement results in
a sharp spectral feature near the diffraction edge, and how this effect can be totally suppressed
by altering the spatial correlation between the scattering centres. Of much importance for poten-
tial applications is the width of the diffractive peak, and I assessed the in uence of a dispersion in
particle sizes on the intensity and width of the spectral lineshape. A coupled dipolemodel was used
to disentangle the effects of inhomogeneous broadening and coherent multiple scattering.
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“And would it have been worth it, after all,
After the cups, the marmalade, the tea,
Among the porcelain, among some talk of you and me,
Would it have been worth while
To have bitten off the matter with a smile […]

And would it have been worth it, after all,
Would it have been worth while,
After the sunsets and the dooryards and the sprinkled streets,
After the novels, after the teacups,
after the skirts that trail along the floor–
And this, and so much more?–
It is impossible to say just what I mean!
But as if a magic lantern threw the nerves in patterns on a screen:
Would it have been worth while?
If one, settling a pillow or throwing off a shawl,
And turning toward the window, should say:
‘That is not it at all,
That is not what I meant, at all’ ”

T.S. Eliot

9
Conclusions

T  properties of gold nanoparticles have been investigated in this thesis with a series
of experiments performed on single particles and on two-dimensional arrays of particles in

different con gurations.
A review of the current modelling techniques available to describe the interaction of light with

gold nanoparticles was given in chapter 2 and chapter 3. Although there is a wide range of tech-
niques available to describe the scattering response of gold nanoparticles, the research in this eld
is very active as the precise morphology and dielectric function of the particles has a very strong
in uence on the observed optical properties. A successful comparison between experiment and
theory still suffers from the high computational cost of solving this particular scattering problem,
and the limited description of the material in terms of a macroscopic dielectric function that is not
necessarily adequate (e.g. non-local effects) or well characterised.

In chapter 4, the precise morphology of isolated gold nanorods was seen to offer a large tun-
ability of the resonant excitation of localised plasmon resonances by incident light. e strong
scattering response of gold nanorods of varying size and aspect ratio was probed by dark- eld
spectroscopy and revealed several trends. (i) e aspect ratio and size of the particle can be used to
tune the resonance frequency (as with a radio-wave antenna). is behaviour was well accounted
for bymodelling the particles as dipolar scatterers. e nite size of the particles introduces retard-
ation effects that need to be considered in the modelling to obtain a good agreement between the
experimental observations and the dipolar approximation. However, it was observed that larger
particles present a more complicated scattering response with a mixture of resonances in the scat-
tering spectra. is experimental observationwas attributed to the lack of symmetry of the granular
particles obtained by thermal evaporation, and the uncertainty in the polarisation of the incident
light with respect to the principal axes of the particles. A comparative study with mono-crystalline
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nanorods could allow for a better characterisation of these effects. (ii) e width of the LSPR is
the result of several contributions. First, the material properties (described by a complex permit-
tivity ϵ) account for the intrinsic broadening the LSPR. is contribution can be modelled in good
agreement with experimental data from small gold nanorods in the Rayleigh regime [1]. Second,
nanoparticles of small size and/or large aspect ratio exhibit an additional damping mechanism that
arises from the restricted mean free path of the electrons (surface scattering). is effect was seen
to be important for the smaller particles characterised in this thesis, and improved the agreement
between numerical modelling and experiments ( gure 4.6). Last, the volume of the nanoparticles
has a strong in uence on the width of the LSPR through the mechanism of radiative damping. An
experimental study of the relative in uence of the radiative and intrinsic damping contributions
would bene t from the possibility of creating a series of particles with a constant volume but a
differing aspect ratio. Alternatively, Liu et al. [2] recently performed a series of experiments with
a varying temperature that allowed them to decorrelate the effects of intrinsic damping from the
radiative damping contribution.

e optical response of gold nanorods being well characterised in chapter 4, the subject of
chapter 5 focussed on the response of a collection of such particles in close proximity (average
spacing ∼ 200nm–400 nm). In this situation, the particles present a modi ed optical response
that is due to the electromagnetic interaction between neighbouring particles. Each particle is ex-
cited by a combination of the incident eld and a superposition of partial waves multiply scattered
in the cluster of particles. e spectral response of such collections of particles was examined in
bright eld transmission spectroscopy and revealed the following conclusions. First, the obser-
vation of a large sample of particle responses affects the observed lineshape by inhomogeneous
broadening. e resonance observed in extinction measurements on several particles leads to a
much broader lineshape than in single particle measurements on isolated particles. is effect was
veri ed using samples prepared by electron-beam lithography for which three particles were indi-
vidually probed by dark- eld spectroscopy, in comparison to the global extinction obtained from
the three particles simultaneously. e spectral lineshape can be represented as a convolution of
the individual particle spectra with the distribution of resonance frequencies. e optical response
of a collection of particles may also differ from the individual particle response because of the elec-
tromagnetic coupling between particles. In the dipole model, this coupling leads to a broadening
of the spectral shape for dense arrangements of particles. Further, the proximity of neighbouring
particles with a strong scattering response can result in the excitation of multipolar resonances that
would not be observed for isolated particles illuminated by a single plane wave. is coupling to
higher order resonances was modelled for a cluster of spheres using an extension of the Mie theory
and revealed a complex interaction between particles. e predicted behaviour involves a balance
between the dipolar response and the excitation of higher-order resonances. is interesting re-
gime of interactions could only be explained by further experiments with large nanoparticles, and a
theoretical description of the coupling between multipoles in adjacent particles. It is expected that
the physics of such coupling can yield a rich variety of optical effects as does the dipolar coupling
between neighbouring particles.
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Conclusions

In order to maintain a sharp resonant feature in the optical response of arrays of nanoparticles
with a dipolar response, a different regime was investigated in chapter 6— 8. e separation of the
particles was chosen to be commensurate with the wavelength of resonant excitation of the loc-
alised plasmon supported by the individual particles. In this regime we observe the interplay of
two resonant mechanisms. First, the isolated particles support a LSPR that leads to a strong scat-
tering response. Second, the periodic arrangement of scatterers forms a diffraction grating that
exhibits a geometric resonance when the light that is scattered by each particle is in phase with the
light scattered by the other particles. is coherent multiple scattering process strongly modi es
the LSPR and results in a sharp spectral feature near the diffraction condition. e experimental
demonstration of this effect is presented in chapter 6. A simple coupled dipole model is used to
describe the basic principle of this diffractive coupling. An index asymmetry of the surround-
ing environment of the particles was shown experimentally to strongly alter the radiative coupling
between particles. Recent works [3] suggest that the diffractive coupling can survive a small index
asymmetry. e study of the strength of the surface mode as a function of index asymmetry is the
subject of current research in collaboration with the group of J. García de Abajo.

In chapter 7 the properties of such diffractive arrays of gold nanorods are further investigated in
a symmetric environment by varying the particle size and periodicity. It is found that the integrated
extinction per particle obeys a sum rule that related the shape factor and the volume of the particle
to the integrated extinction at all frequencies. is sum rule is tested against the data and numerical
modelling on gold ellipsoids. Further theoretical work seems to be needed in order to con rm the
sum rule for particles with large aspect ratio and a realistic form of the dielectric function.

e in uence of disorder on the diffractive coupling of gold nanoparticle arrays is studied in
chapter 8 where the idealised periodic structure of chapter 6 is altered in two ways. First, the
particles are displaced from their regular location by an increasing amount. It is seen that the
sharp and intense spectral feature resulting from the coherent multiple scattering in the plane of
the particles is progressively weakened. In the limit of uncorrelated positions, the extinction spec-
trum is the result of an inhomogeneously broadened collection of non-interacting single particles.
A coupled dipole model is used to investigate this effect numerically and the results con rm the
experimental observations. Second, the particles are placed on a regular array, with a distribution
of particle sizes. Here the diffractive coupling is observed at the diffraction edge of the grating, but
the main resonance features associated with the excitation of LSPRs on the particles is broadened
and weakened by the distribution of localised resonances.
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A
Poynting theorem and elastic scattering

cross-sections

e rate of work done by the incident eld on a system of charges is given by [1, 2],

W =J ·E (A.1)

Conservation of energy requires the conversion of this incident electromagnetic power into mech-
anical energy and heat [3].

e total current J is given by the Maxwell equation J =∇×H − ∂tD ,

W = (∇×H ) ·E − (∂tD) ·E . (A.2)

Let us consider the divergence of the Poynting vector de ned as S = E ×H ,

∇·S =H ·∇×E −E ·∇×H . (A.3)

Using the Maxwell equations, we substitute ∇×E =−∂tB , leading to the Poynting theorem,

−J ·E =∇·S +(H · ∂tB +E · ∂tD) , (A.4)

which expresses the conservation of energy: the power extracted from the applied eld is equal to
the divergence of the power radiated by the charges plus the rate of change of the energy density u

de ned as [2],
u =H · ∂tB +E · ∂tD. (A.5)
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A.1 Cross-sections

Taking the time-average of equation A.4 gives the steady-state absorption of energy in the form of
heat,

Q =< u >=
1

T

∫ T

0

u (t )dt . (A.6)

It is convenient to express equation A.4 for a monochromatic eld of frequency ω. e real elds
in equation A.4 are expressed in terms of the complex elds in the frequency domain according
to [2],

E → (E+E∗)/2
∂tD → − iω(ϵE− ϵ∗E∗)/2

. . .

Averaging the energy density with respect to time,

< E ·E>
< E∗ ·E∗ >

. . .

∝
∫ T

0

exp(±2iωt ) = 0.

Two non-zero terms remain,

Q = iω
�
(ϵ∗− ϵ)E ·E∗+(µ∗−µ)H ·H∗� ,

which simpli es to,
Q =ω

�
ϵ′′|E|2+µ′′|H|2� . (A.7)

We note that if the conductivity is purely imaginary, ϵ′′ = 0, and the material does not absorb
energy. e absorption of energy (ohmic loss) is given by the in-phase component of the current
times the incident eld,

< u >=
1

T

∫ T

0

J sin(ωt −ϕ) ·E sin(ωt )dt =
E J

2
cos(ϕ), (A.8)

which translates into ℜ(E · J∗) in the Fourier domain.
e energy density requires amore careful treatment in the case of a dispersivemedium (see [2]),

u = ∂ω (ϵω) |E|2+ ∂ω �µω� |H|2. (A.9)

A.1 Cross-sections

e time average of the energy density gives the rate of dissipation of energy in ohmic loss. Integrat-
ing over the particle volume and normalising by the incident power ux, we obtain the absorption
cross-section [4],

σabs =
k

|Einc|2
∫
volume

ϵ′′|E|2 d 3r. (A.10)
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A.1 Cross-sections

e scattering cross-section is obtained by integrating the real part of the complex Poynting vector
E×H∗ over the full solid angle around the scatterer,

σsca =
k

|Einc|2
∫
sphere
ℜ(E×H∗) · n̂ d s . (A.11)

e workℜ(Einc ·J∗) done by the incident eld on the charges of the scattering body results in both
absorption and scattering [5]. Noting that the current J corresponds to a polarisation J = −iωP,
we can write,

σext =
k

|Einc|2ℑ
�∫

volume
E∗inc ·P d 3r

�
. (A.12)

e polarisation P can be expressed in terms of the internal eld P= (ϵ−1)E, giving an altern-
ative expression for the extinction cross-section [4],

σext =
k

|Einc|2ℑ
�∫

volume
(ϵ−1)E∗inc ·E d 3r

�
. (A.13)
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B
On the resonance of a radiating dipole
perturbed by its environment and its
relation to the effective polarizability

B.1 Lineshape of the LSPR

Let us consider a small spherical particle characterised by a static polarizability α,

α=
ϵ−1

ϵ+2
. (B.1)

e metal is described by the Drude permittivity

ϵ = 1− ω2
p

ω2+ iγω
, (B.2)

which, inserted in equation B.1 yields,

α=
ω2

0

(ω2−ω2
0)+ iγω

, ω0 =ωp/
p

3. (B.3)

e scattering is proportional to |α|2, leading to a lineshape of the form,

σsca ∝ ω4
0

(ω2−ω2
0)

2+γ2ω2
. (B.4)
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B.2 Effective polarizability

Close to the resonance (ω≈ω0),

ω2−ω2
0 = (ω−ω0)(ω+ω0)≈ 2ω0(ω−ω0).

e lineshape can therefore be approximated by a Lorentzian (Cauchy distribution),

σsca ∝ ω2
0

(ω−ω0)2+(γ/2)2
. (B.5)

B.2 Effective polarizability

epolarizability equation B.1 needs to be corrected to account for radiative damping and dynamic
polarisation. is is done by considering the net eld acting on each sub-element of the particle to
be the sum of the incident eld plus a contribution arising from the neighbouring polarisation. e
result of this self-consistent equation for the net eld yields a corrected polarizability of the form,

α∗ = 1

1/α− c
, (B.6)

where c is a complex number, c = k 2/a −2/3i k 3.
Similarly, the electromagnetic interaction of twodipoles can be cast in a linear systemof coupled

equations that yields an effective polarizability for the dimer of the form equation B.6. Here c is
a tensor with complex elements that describes the radiative coupling between two dipoles (the
Green’s dyadic).

is situation can be generalised to the interaction of dipoles in an in nite array illuminated
at normal incidence. All dipoles are equivalent, and their response can be cast in the form equa-
tion B.6 where c is de ned as the array factor (noted S in chapter 6). is is a complex number
that describes the dipolar interaction of the array of dipoles. From a dimensionality argument,
[S] = [1/α], therefore S can be thought of as the description of the eld radiated by a Dirac comb of
unit dipoles. e response of the array is then given by the convolution of the response of the real
dipole with this Green’s dyadic.

Assuming the form of α to be that of a Cauchy distribution (equation B.3), the effective polar-
izability α∗ can be written as

α∗ = ω2
0

(ω2−ω2
0)+ iγω−ω2

0c
. (B.7)

e complex number c can be split into its real and imaginary part, leading to the following con-
clusion,

• ℜ(c ) results in a shi of the resonance frequency fromω0 toω0−ℜ(c )
• ℑ(c ) results in a modi cation of the resonance width from γ to γ+ℑ(c ).
is result explains qualitatively the spectral shi and modi cation of width of the LSPR in

three cases considered in this work. (i) e formulation of the modi ed long wavelength approx-
imation. (ii) e response of a pair of dipoles. (iii) e radiative coupling in an in nite array of
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B.2 Effective polarizability

identical dipoles illuminated at normal incidence. It should be noted, however, that c can be fre-
quency dependent which results in a more complicated modi cation to the spectral lineshape than
a frequency shi and change of resonance width.
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C
Electron beam lithography: detailed

procedure

In this section I will describe the details of the electron-beam lithography procedure.

C.1 Exposure

e substrate is placed on a conducting sample holder in the vacuum chamber of the EBL system.
e process of EBL requires the following steps,

1. Beam cross-over
Aer several weeks of use, the beam can show an offset that depends on the voltage and
intensity settings. is misalignment needs to be adjusted manually by tuning the lens and
beam offset parameters ( gure C.1(c)).

2. Specimen current
e ‘Faraday cup’ ( gure C.1(a)) is used to determine the intensity of the current formed
by the electron-beam from the source to the sample. By focussing the beam to the Faraday
cup the maximum intensity is recorded and adjusted if necessary. Typical values were in the
range 25 −40 pA.

3. Alignment of the stage
e sample is placed on a -stage that can be moved in three directions and rotated. e
sample is rst rotated to be parallel to the axes of translation of the stage, and the height is
carefully adjusted to a working distance of 5mm. A focussing knob is adjusted to link the
actual level of the stage to the monitoring program.
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C.1 Exposure

(b) Chessy sample

(d) Beam centering(c) Chamber
view

(a) `Contamination spot’

FigureC.1: Electron-beam lithography procedure (the gure is amontage from3 individual screen-
shots for illustration purposes).

4. Write- eld alignment
e stage is moved to the ‘chessy sample’ which is a metallic pattern designed for alignment
procedures ( gure C.1(b)). Squaremarks are separated by precise distances (1 µm, 10 µm…).
A dedicated position list is used to set 3 speci cmarkers aligned with the grid, and record the
corresponding actual position of the beam measured by the sensors. is procedure needs
to be performed at the write- eld and magni cation settings that will be used during the
exposure.

5. UV alignment
Similarly, the stage coordinates system needs to be aligned with the sample, and this is done
by recording the position against 3 locations on the chessy sample.

6. Focussing
e stage is moved so as to align the beam with the centre of the substrate. e beam needs
to be blanked when passing near the region to be exposed. To adjust the focussing of the
beam, a sacri cial area is chosen near the edge of the sample. e height of the stage is
adjusted together with the focussing knob so as to recover the working distance of 5mm
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C.2 Metal deposition

that was used for the beam alignment. e beam also needs to be precisely focussed on the
surface of the substrate, and should not present a distortion (astigmatism). is important
procedure is carried out by exposing a nanometre-sized point of the surface for a few seconds.
e contamination of the chamber (small quantities of remaining gas) are deposited by the
electron-beam on the surface and provide a cross-section of the beam shape at the surface.
e ‘contamination spot’ should be a small (typically about 20 nm radius), round point. If
the size of the spot is too large, the exposure will not be accurate. If the spot is distorted, the
beam is astigmatic and this will also cause a loss of accuracy in the particle shapes. A typical
‘contamination spot’ is shown in gure C.2(a). e grain structure of the gold lm used for
electrical conductivity is well resolved and indicates a good focus.

7. Exposure
e beam is blanked, the magni cation is set to the value used in step 3 (1875×), and the
origin of coordinates is set to the central part of the sample. e position list is loaded in the
program and the exposure can start (with a duration of typically a few hours for the samples
fabricated in this thesis).

C.2 Metal deposition

e triangular particles have a thin (∼ 2nm) chromium underlayer deposited before the ∼ 40nm
thick layer of gold. Because of the necessity of not breaking the vacuum between the deposition of
both metals, two boats are used to hold and melt the different metals. In this case, the separation
between the boats was too large , resulting in a displacement of the layers deposited on the substrate
through the PMMA mask. Such an effect can be minimized by adjusting the position of the boats
closer to the vertical of the sample, and when possible using a higher deposition chamber.
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C.2 Metal deposition

(a) (b)

(d)(c)

Figure C.2: SEMs illustrating the metal deposition aer e-beam lithography. (a) Sample before the
li-off procedure. e 4 dark triangular holes correspond to the position of the particles where the
resist was exposed and removed. (b) General overview of a typical EBL sample. Square arrays of
particles and large labels (text and arrows) extend over an area of about half a millimetre squared.
(c) Triangular gold particles aer the li-off, with a chromium underlayer. e offset is due to the
excessive separation (about 5 cm) of the two boats in the chamber during the thermal evaporation.
(d) Tilted SEM of a large gold label aer the metal deposition. e thickness can be estimated from
this measurement, with a correction for the tilt angle (52°).
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