

Optical antennas Nano-optics and plasmonics

Baptiste Auguié

2015 bootcamp – Kaikoura

Optical antennas Nano-optics and plasmonics

Baptiste Auguié

2015 bootcamp – Kaikoura

"The antenna of a cell phone is used to concentrate the energy of incoming radiation onto a receiver chip with dimensions much smaller than the wavelength of the incoming radiation."

Lukas Novotny

The History of Near-field Optics

Lycurgus vase

Why plasmonics?

$$k = \frac{2\pi}{\lambda} = \sqrt{k_x^2 + k_z^2}$$

 $k_z \text{ imaginary } \Rightarrow k_z^2 < 0$

sub-wavelength optics

 $\lambda_{
m spp} < \lambda_{
m light}$

field enhancement

dust

flake

					٠.	
				11 11 11 11		
 sing	gle par	ticles				
		•		i		
					٠.	
					mar	ks
					•	
di	ffractiv	ve arr	ays			

100µm

Planar "antennas"

Controlling the Phase of a Light Beam with a Single Molecule M. Pototschnig, Y. Chassagneux, J. Hwang, G. Zumofen, A. Renn, **V. Sandoghdar** Phys. Rev. Lett. 107, 063001 (2011)

A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency
K. G. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn,
V. Sandoghdar, S. Götzinger Nature Photonics 5, 166 (2011)

Single molecule imaging by optical absorption M. Celebrano, P. Kukura, A. Renn, **V. Sandoghdar** Nature Photonics 5, 95 (2011)

Surface Plasmon Resonance Kretschmann style

Surface-plasmon resonance

Optical reciprocity

FAR-FIELD radiation linked to NEAR-FIELD enhancement

and vice versa

ONE RING TO RULE THEM ALL, ONE RING TO FIND THEM ONE RING TO BRING THEM ALL AND IN THE DARKNESS BIND THEM

SERS on a flat metal film

Distributed Bragg Reflector

Adding a gold layer

Icing on the cake – a refractive index sensor

Perfect absorber – critical coupling

More on critical coupling:

Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media Rev. Mod. Phys. 80, 1201, 2008