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Surface Plasmon-Polaritons
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Surface Plasmon Resonance sensing
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SPP dispersion
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Sensitivity to refractive index change
gold silver
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(Surface-Enhanced) Raman Scattering
1.4 Electromagnetic Model for the SERS and Fluorescence Enhancement Factors 25
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Figure 1.11 A (Stokes) Raman scatter-
ing process (under both normal and SERS
conditions) is an instantaneous process in
which the scattered photon is directly linked
to the incoming one. The incoming pho-
ton does not have to be absorbed at all by
the molecule (non-resonant Raman scat-
tering). This is depicted in (a), where a
schematic Jablonski diagram for the elec-
tronic structure of the molecule is shown.

From a quantum mechanical point of view,
the Raman process can be considered as an
incoming photon (green) interacting with a
‘virtual state’ (dashed line) and emitting in-
stantaneously a scattered photon (red) that
leaves the molecule in an excited vibrational
state (ν = 1 in (a)). The same is depicted
schematically in (b): both photons are simul-
taneous and benefit from the enhancement
provided by the SERS substrate.

the time the molecule has reached the vibrational ground state of S1, it remains
there for a few nanoseconds (a typical lifetime before emission for a bare molecule).
The main point to realize here is that (unlike Raman) the emission process is now
completely independent of the initial absorption; that is, both photons are not
linked to each other in a coherent (and instantaneous) way as they are in Raman.
For example, if we increase (by some external means) the rate (photons per unit
time) at which photons are emitted from the vibrational ground state of S1, we
cannot force more photons per unit time to be absorbed as a result. If one photon
has been ‘taken’ from the laser beam to produce a Raman process, then there will
be a scattered photon (one cannot exist without the other). In fluorescence, on the
contrary, we have situations in which some of the potentially emitted photons (from
the ground state of S1) go ‘missing’ (in non-radiative recombination, for example).
Once the molecule is exited to the ground state of S1, the best we can do is to recover
everything that has been excited in the initial absorption step (in general a fraction
will be missing through processes that allow the molecule to relax back to the
ground state of S0 without emitting a photon). But this is independent of the initial
absorption process. Therefore, the two processes are effectively ‘disconnected’ in
fluorescence (unlike Raman) and this has important consequences for the different
way the EFs work in Raman or fluorescence.

One could argue (hopefully without running the risk of straying too much
into semantics) that the fluorescence emission (Figure 1.12e and f ) has lost the
‘handle’ to control the absorption process (Figure 1.12a and b). Crucial to this
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Dipole emission
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Collecting the cone
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Early attempts (1984)
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Experimental setup
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¿questions?


